
A SYSTEM THAT I USED TO KNOW
From “Hello World” to ShearWave Elastography

Benoit Chauvin

Benoit.chauvin[at] gmail.com

AN ULTRASOUND SYSTEM

CONTEXT

▪Start-up in the south of France

▪ Founded by well known names in the field

▪Ambitious project:
▪ GNU/Linux based software centric ultrasound system
▪ New tech for ultrasound
▪ New hardware

SHEARWAVE ELASTOGRAPHY 1/2

SHEARWAVE ELASTOGRAPHY 2/2

PUSH
• Depth oriented
• Wave creation

IMAGING
• Wave imaging
• High frequency

DISPLAY
• LUT for density
• Quantification

CONCEPTUAL CONSTRAINTS

▪KISS principle
▪Maintainability
▪ Readability
▪ Ease of change

▪No need to reinvent the wheel
▪ Use third party libraries
▪ Rely on the standard library
▪ Avoid unnecessary code

▪Trust but verify
▪ Changes to be heavily peer reviewed

TECHNICAL CONSTRAINTS

▪Language C/C++
▪ Good performance
▪ Available libraries

▪GNU/Linux
▪ Efficiency
▪ Cost of changing OS low-ish
▪ Driver development

DESIGN CONSTRAINTS

▪Modular
▪ Each module is a process
▪ Manager for scheduling / debugging

▪ Event based system
▪ State machines
▪ “Easy” to add a new transversal path

▪ Last moment processing
▪ Ultrasound images are noisy
▪ User parameters changes at review for tuning

A “STATE OF THE ART” PIPELINE

US HW SP IMG SCREEN

REVIEW NOT
SCREEN

WHAT DOES WHAT? 1/2

▪US
▪ Controls ultrasound parameters from user requests
▪ Programming sequences for the hardware

▪HW
▪ Executing the sequences from US
▪ Giving the data back to the signal processing unit

▪SP
▪ Process the raw data to grayscale images
▪Minimal image processing

US HW SP IMG SCREEN

REVIEW NOT
SCREEN

WHAT DOES WHAT? 2/2

▪ IMG
▪ User control display parameters
▪ Controls the screen
▪ Request US changes

▪SCREEN
▪ Image processing
▪ Display the image to the user

▪REVIEW / NOT-SCREEN
▪ User control display parameters when not imaging
▪ Controls off screen rendering

US HW SP IMG SCREEN

REVIEW NOT
SCREEN

MODULE ARCHITECTURE

Juicy Part

Event Loop

State Machine

Message Queue

Shared Memory

Common Definitions

COMMON DEFINITIONS

▪ Identifiers
▪ Message queues ID
▪ Shared memories ID
▪ Shared memory chunks ID

▪ Structures
▪ Shared memories structures
▪ Messages structures

▪ Classes
▪ Mutexes
▪ Shared memory class
▪ Module class
▪ State machine system

Juicy Part

Event Loop

State Machine

Message Queue

Shared Memory

Common Definitions

SHARED MEMORY/MESSAGE QUEUES

▪Shared Memory
▪ One for the raw dump from the hardware
▪ One for the processed data
▪ Shared amongst all modules

▪Message Queues
▪ One per module
▪ All modules know all the messages
▪ Small messages, one command, one SHM chunk ID
▪ All the functionalities encoded in a xml state

Juicy Part

Event Loop

State Machine

Message Queue

Shared Memory

Common Definitions

POWER TO THE STATES

▪State machine centralised the behaviours

▪Really simple to add/change/remove path

▪Pitfalls:
▪ Really difficult to debug live
▪ No documentation up to date

▪Need for live debugging tools
▪ State machine live display
▪ Sequence diagram recorder

Juicy Part

Event Loop

State Machine

Message Queue

Shared Memory

Common Definitions

EVENT LOOP

▪Event loops reacts to messages and drives the system

▪Only the concept of current data
▪ Current image
▪ Current mode
▪ Really Buddhist “now”

▪Processing unit retains minimum information

Juicy Part

Event Loop

State Machine

Message Queue

Shared Memory

Common Definitions

MY JUICY PARTS SCREEN-IMG-REVIEW

▪Constraints
▪ 1% of one CPU
▪ Full use of the GPU
▪ Highest frame rate possible
▪ Readability of the UI as the goal

▪Personal challenges
▪ Just graduated
▪ Never done a UI before
▪ Never done any C++
▪ Never touched openGL
▪ Other team members had 15+ years experience

Juicy Part

Event Loop

State Machine

Message Queue

Shared Memory

Common Definitions

SCREEN 1/2

▪ One window
▪ SDL
▪ GTKmm / Cairo

▪ Graphics libraries
▪ openGL
▪ CUDA

▪ Modular system based on inheritance
▪ One big HUB for updates

SCREEN 2/2

background

mode infos

lookup table

annotations

grayscale

color

PW

SWE

options infos

CONCLUSION

▪ We succeeded in launching Aixplorer on the market
▪ Company growth from 4 to 80 people in the meantime
▪ Each team had it’s module to take care of

▪ US engineers able to experiment easily
▪ We were able to add modules easily

▪ Measurement
▪ Reporting
▪ DICOM

▪ I learnt a lot in a lot of different domains
▪ This shaped my way of architecturing software

THE QUESTIONS SLIDE

▪ Now
▪ Later on at the pub
▪ Anytime: benoit.chauvin[at].com

