Why the compiler broke

your program
Peter Brett, LiveCode

Six impossible things before breakfast

[**
* Returns the first EntList not of type join, starting from this.
*/
EntList * EntList::firstNot(JoinType j) {))
EntList % sibling = this; sibling can’t be null...

while(sibling != NULL && sibling->join == j) {

sibling = sibling->next;
} \
return sibling; // (may = NULL) ...s0 why do | get a null

} pointer dereference here?

EntList::firstNot(int):

First

.L5:
EntList *EntList::firstNot(JoinType j)
{
EntList * sibling = this; L .L3:
while (sibling != NULL) { oop
if (sibling->join != j)
break; u
sibling = sibling->next;
+
return sibling; L2
}
.L4:

GCC 4.4.7 (pre C++11): -O3

test
je
mov
mov
cmp
je
jmp

cmp
jne

mov
test
jne
rep
ret

mov

rep
ret

rdi,
L2
edx,
rax,
edx,
.L3
L2

.L4

rax,
rax,
.L5

rax,

rdi

rdi
esi

rax

rdi

[rdi+8]

[rax+8], edx

[rax]

EntList * EntList::firstNot(JoinType j)
{
EntList * sibling = this;
while (sibling != NULL) {
if (sibling->join != j)
break;
sibling = sibling->next;
+

return sibling;

GCC 6.3: -03

EntList::firstNot(JoinType):

.L3:

.L1:

mov rax, rdi

cmp [rax+8], esi
jne L1

mov rax, [rax]
test rax, rax

jne .L3

rep ret

What does the C++ standard say?

“If a non-static member function of a class X is called for an object that is not of type
X, or of a type derived from X, the behavior is undefined.”

— C++17 draft standard §12.2.2

“In the body of a non-static member function, the keyword this is a prvalue
expression whose value is the address of the object for which the function is called.”

— C++17 draft standard §12.2.2.1

Undefined behaviour is magic!

1.

If EntList::firstNot() is called for an object that is not of type
EntL1ist, the behaviour is undefined.

nullptr is not an object of type EntList.

Therefore if EntList::firstNot() is called for nullptr, the behaviour is
undefined.

Therefore it can be assumed that this is never nullptr.

Therefore the check can be optimised out.

EntList::firstNot(JoinType):

test rdi, rdi
je .L6
cmp esi, [rdi+8]
mov rax, rdi
je .L4
jmp L1
.L5:
cmp [rax+8], esi
EntList * EntList::firstNot(JoinType j) jne L1
{ .L4:
EntList * sibling = this; mov rax, [rax]
while (sibling != NULL) { test rax, rax
if (sibling->join != j) jne .L5
break; rep ret
sibling = sibling->next; .L1:
} rep ret
return sibling; .L6:
} Xor eax, eax
ret

GCC 6.3: -O3 -fno-delete-null-pointer-checks

What's the actual problem here?

e The standard is wrong!
o The C++ standard should define what happens when calling methods on an invalid object
e The compiler is wrong!
o A compiler shouldn’t include new optimisations that might break previously-working code
o ...or, atleast, they shouldn’t be enabled by default
e The program is wrong!

o The program should use STL collection types & algorithms
o The program shouldn’t expect a specific realization of undefined behaviour

Working with a legacy codebase

e Know the C++ spec & be able to recognize common problematic UB patterns
thisvs. nullptr

Signed overflow

Out-of-bounds access

Uninitialised scalar variables

Access to dead pointers, e.g. after passing to realloc()

e Become friends with your disassembler and debugger

e Disable optimisations that cause problems

o Use lower optimisation level

o -fno-delete-null-pointer-checks, -fno-strict-overflow, -fno-strict-aliasing
e Use UndefinedBehaviorSanitizer (-fsanitize=undefined)

o Requires excellent test coverage
o Sometimes UB is required for fast code, e.g. array offsets

o O O O O

Developing new code

e Avoid implementing your own data structures & algorithms

o Modern STL implementations are really good (libc++, libstdc++, MSVC 2017)
e Design APlIs not to use raw pointers
e Be a pedantic language lawyer

o Avoid UB if possible

o If UB is necessary, document it carefully

e Know your compiler & platform ISA

Sanity-check the assembly generated by the compiler

Thank you!

Resources:

e My Little Optimizer: Undefined Behavior is Magic (Michael Spencer, CppCon)

e Garbage In, Garbage Out: Arguing about Undefined Behavior with Nasal
Demons (Chandler Carruth, CppCon)

e (C++ Draft Standard

e Compiler Explorer

https://www.youtube.com/watch?v=g7entxbQOCc
https://www.youtube.com/watch?v=g7entxbQOCc
https://www.youtube.com/watch?v=yG1OZ69H_-o
https://www.youtube.com/watch?v=yG1OZ69H_-o
https://www.youtube.com/watch?v=yG1OZ69H_-o
https://www.youtube.com/watch?v=yG1OZ69H_-o
http://eel.is/c++draft/
http://eel.is/c++draft/
https://godbolt.org/
https://godbolt.org/

