
Why the compiler broke
your program

Peter Brett, LiveCode

/**
 * Returns the first EntList not of type join, starting from this.
 */
EntList * EntList::firstNot(JoinType j) {
 EntList * sibling = this;

 while(sibling != NULL && sibling->join == j) {
 sibling = sibling->next;
 }
 return sibling; // (may = NULL)
}

sibling can’t be null…

Six impossible things before breakfast

…so why do I get a null
pointer dereference here?

EntList::firstNot(int):
 test rdi, rdi
 je .L2
 mov edx, DWORD PTR [rdi+8]
 mov rax, rdi
 cmp edx, esi
 je .L3
 jmp .L2
.L5:
 cmp DWORD PTR [rax+8], edx
 jne .L4
.L3:
 mov rax, QWORD PTR [rax]
 test rax, rax
 jne .L5
 rep
 ret
.L2:
 mov rax, rdi
.L4:
 rep
 ret

GCC 4.4.7 (pre C++11): -O3

#define NULL (__null)
typedef int JoinType;
class EntList {
 EntList* next;
 JoinType join;
public:
 EntList* firstNot(JoinType j);
};

EntList *EntList::firstNot(JoinType j)
{
 EntList * sibling = this;
 while (sibling != NULL) {
 if (sibling->join != j)
 break;
 sibling = sibling->next;
 }
 return sibling;
}

Loop

First

EntList::firstNot(JoinType):
 mov rax, rdi
.L3:
 cmp DWORD PTR [rax+8], esi
 jne .L1
 mov rax, QWORD PTR [rax]
 test rax, rax
 jne .L3
.L1:
 rep ret

GCC 6.3: -O3

#define NULL (nullptr)
enum class JoinType : int;
class EntList {
 EntList* next;
 JoinType join;
public:
 EntList* firstNot(JoinType j);
};

EntList * EntList::firstNot(JoinType j)
{
 EntList * sibling = this;
 while (sibling != NULL) {
 if (sibling->join != j)
 break;
 sibling = sibling->next;
 }
 return sibling;
}

What does the C++ standard say?
“If a non-static member function of a class X is called for an object that is not of type
X, or of a type derived from X, the behavior is undefined.”

— C++17 draft standard §12.2.2

“In the body of a non-static member function, the keyword this is a prvalue
expression whose value is the address of the object for which the function is called.”

— C++17 draft standard §12.2.2.1

Undefined behaviour is magic!
1. If EntList::firstNot() is called for an object that is not of type

EntList, the behaviour is undefined.
2. nullptr is not an object of type EntList.
3. Therefore if EntList::firstNot() is called for nullptr, the behaviour is

undefined.
4. Therefore it can be assumed that this is never nullptr.
5. Therefore the check can be optimised out.

EntList::firstNot(JoinType):
 test rdi, rdi
 je .L6
 cmp esi, DWORD PTR [rdi+8]
 mov rax, rdi
 je .L4
 jmp .L1
.L5:
 cmp DWORD PTR [rax+8], esi
 jne .L1
.L4:
 mov rax, QWORD PTR [rax]
 test rax, rax
 jne .L5
 rep ret
.L1:
 rep ret
.L6:
 xor eax, eax
 ret

GCC 6.3: -O3 -fno-delete-null-pointer-checks

#define NULL (nullptr)
enum class JoinType : int;
class EntList {
 EntList* next;
 JoinType join;
public:
 EntList* firstNot(JoinType j);
};

EntList * EntList::firstNot(JoinType j)
{
 EntList * sibling = this;
 while (sibling != NULL) {
 if (sibling->join != j)
 break;
 sibling = sibling->next;
 }
 return sibling;
}

What’s the actual problem here?
● The standard is wrong!

○ The C++ standard should define what happens when calling methods on an invalid object

● The compiler is wrong!
○ A compiler shouldn’t include new optimisations that might break previously-working code
○ …or, at least, they shouldn’t be enabled by default

● The program is wrong!
○ The program should use STL collection types & algorithms
○ The program shouldn’t expect a specific realization of undefined behaviour

Working with a legacy codebase
● Know the C++ spec & be able to recognize common problematic UB patterns

○ this vs. nullptr
○ Signed overflow
○ Out-of-bounds access
○ Uninitialised scalar variables
○ Access to dead pointers, e.g. after passing to realloc()

● Become friends with your disassembler and debugger
● Disable optimisations that cause problems

○ Use lower optimisation level
○ -fno-delete-null-pointer-checks, -fno-strict-overflow, -fno-strict-aliasing

● Use UndefinedBehaviorSanitizer (-fsanitize=undefined)
○ Requires excellent test coverage
○ Sometimes UB is required for fast code, e.g. array offsets

Developing new code
● Avoid implementing your own data structures & algorithms

○ Modern STL implementations are really good (libc++, libstdc++, MSVC 2017)

● Design APIs not to use raw pointers
● Be a pedantic language lawyer

○ Avoid UB if possible
○ If UB is necessary, document it carefully

● Know your compiler & platform ISA

Sanity-check the assembly generated by the compiler

Thank you!

Resources:

● My Little Optimizer: Undefined Behavior is Magic (Michael Spencer, CppCon)
● Garbage In, Garbage Out: Arguing about Undefined Behavior with Nasal

Demons (Chandler Carruth, CppCon)
● C++ Draft Standard
● Compiler Explorer

https://www.youtube.com/watch?v=g7entxbQOCc
https://www.youtube.com/watch?v=g7entxbQOCc
https://www.youtube.com/watch?v=yG1OZ69H_-o
https://www.youtube.com/watch?v=yG1OZ69H_-o
https://www.youtube.com/watch?v=yG1OZ69H_-o
https://www.youtube.com/watch?v=yG1OZ69H_-o
http://eel.is/c++draft/
http://eel.is/c++draft/
https://godbolt.org/
https://godbolt.org/

