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Six impossible things before breakfast

[ **
* Returns the first EntList not of type join, starting from this.
*/
EntList * EntList::firstNot( JoinType j ) { ) )
EntList % sibling = this; sibling can’t be null...

while( sibling != NULL && sibling->join == j ) {

sibling = sibling->next;
} \
return sibling; // (may = NULL) ...s0 why do | get a null

} pointer dereference here?



EntList::firstNot(int):

First

.L5:
EntList *EntList::firstNot(JoinType j)
{
EntList * sibling = this; L .L3:
while (sibling != NULL) { oop
if (sibling->join != j)
break; u
sibling = sibling->next;
+
return sibling; L2
}
.L4:

GCC 4.4.7 (pre C++11): -O3
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EntList * EntList::firstNot(JoinType j)
{
EntList * sibling = this;
while (sibling != NULL) {
if (sibling->join != j)
break;
sibling = sibling->next;
+

return sibling;

GCC 6.3: -03

EntList::firstNot(JoinType):

.L3:

.L1:

mov rax, rdi

cmp [rax+8], esi
jne L1

mov rax, [rax]
test rax, rax

jne .L3

rep ret



What does the C++ standard say?

“If a non-static member function of a class X is called for an object that is not of type
X, or of a type derived from X, the behavior is undefined.”

— C++17 draft standard §12.2.2

“In the body of a non-static member function, the keyword this is a prvalue
expression whose value is the address of the object for which the function is called.”

— C++17 draft standard §12.2.2.1



Undefined behaviour is magic!

1.

If EntList::firstNot() is called for an object that is not of type
EntL1ist, the behaviour is undefined.

nullptr is not an object of type EntList.

Therefore if EntList::firstNot() is called for nullptr, the behaviour is
undefined.

Therefore it can be assumed that this is never nullptr.

Therefore the check can be optimised out.



EntList::firstNot(JoinType):

test rdi, rdi
je .L6
cmp esi, [rdi+8]
mov rax, rdi
je .L4
jmp L1
.L5:
cmp [rax+8], esi
EntList * EntList::firstNot(JoinType j) jne L1
{ .L4:
EntList * sibling = this; mov rax, [rax]
while (sibling != NULL) { test rax, rax
if (sibling->join != j) jne .L5
break; rep ret
sibling = sibling->next; .L1:
} rep ret
return sibling; .L6:
} Xor eax, eax
ret

GCC 6.3: -O3 -fno-delete-null-pointer-checks



What's the actual problem here?

e The standard is wrong!
o The C++ standard should define what happens when calling methods on an invalid object
e The compiler is wrong!
o A compiler shouldn’t include new optimisations that might break previously-working code
o ...or, atleast, they shouldn’t be enabled by default
e The program is wrong!

o The program should use STL collection types & algorithms
o The program shouldn’t expect a specific realization of undefined behaviour



Working with a legacy codebase

e Know the C++ spec & be able to recognize common problematic UB patterns
thisvs. nullptr

Signed overflow

Out-of-bounds access

Uninitialised scalar variables

Access to dead pointers, e.g. after passing to realloc()

e Become friends with your disassembler and debugger

e Disable optimisations that cause problems

o Use lower optimisation level

o -fno-delete-null-pointer-checks, -fno-strict-overflow, -fno-strict-aliasing
e Use UndefinedBehaviorSanitizer (-fsanitize=undefined)

o Requires excellent test coverage
o Sometimes UB is required for fast code, e.g. array offsets

o O O O O



Developing new code

e Avoid implementing your own data structures & algorithms

o Modern STL implementations are really good (libc++, libstdc++, MSVC 2017)
e Design APlIs not to use raw pointers
e Be a pedantic language lawyer

o Avoid UB if possible

o If UB is necessary, document it carefully

e Know your compiler & platform ISA

Sanity-check the assembly generated by the compiler



Thank you!

Resources:

e My Little Optimizer: Undefined Behavior is Magic (Michael Spencer, CppCon)

e Garbage In, Garbage Out: Arguing about Undefined Behavior with Nasal
Demons (Chandler Carruth, CppCon)

e (C++ Draft Standard

e Compiler Explorer



https://www.youtube.com/watch?v=g7entxbQOCc
https://www.youtube.com/watch?v=g7entxbQOCc
https://www.youtube.com/watch?v=yG1OZ69H_-o
https://www.youtube.com/watch?v=yG1OZ69H_-o
https://www.youtube.com/watch?v=yG1OZ69H_-o
https://www.youtube.com/watch?v=yG1OZ69H_-o
http://eel.is/c++draft/
http://eel.is/c++draft/
https://godbolt.org/
https://godbolt.org/

