
C++ Binary Dependency Management
with Gradle

Hugh Greene <hughg@tameter.org>

2

C++ Binary Dependency Management with Gradle

Getting
consistent versions
of things needed
to build your software
and to use it

3

C++ Binary Dependency Management with Gradle

● Why?
– Saves time
– Identical binaries → confidence in testing
– Fewer global installs of build tools
– Licence costs for compilers, SDKs
– Restricted source access

4

C++ Binary Dependency Management with Gradle

● Newer languages/platforms have their own
– Python: PIP
– Ruby: Gems
– JVM: Ivy, Maven, Gradle, …
– .Net: NuGet

● C++ (in 2013)
– NuGet: poor native variant support

● + other disadvantages

5

C++ Binary Dependency Management with Gradle

● Getting versions: package manager
– *nix: rpm, apt, etc. … maybe Nix
– Windows: nothing (in 2013)
– … or download src, make, install

● Connecting to build
– *nix: ./configure
– Cross-platform: CMake

● Awkward with Visual Studio

6

C++ Binary Dependency Management with Gradle

● The Holy Gradle
– and friends

● Developed and used commercially in-house
– OSS but NOT supported externally
– since 2013

7

C++ Binary Dependency Management with Gradle

● Some requirements
– Easy to understand version set
– Reproducible builds
– Robust against tool failure/bugs
– Binary repository server

● Stop storing binaries in Subversion!
– Disconnected sites
– Windows platform
– Visual Studio (mostly)
–

8

C++ Binary Dependency Management with Gradle

● What?
– Java-land Dependency Management + Build tool

● CMake for Java ≈ building a classpath

– Modules: ID/coordinate = “group:name:version”
– Repositories: http(s)://, file://, with URL patterns
– Configurations: “slices” joining modules/artifacts/tasks
– Artifacts: files

● + metadata files: ID, configurations, artifacts, dependencies

– Tasks: like make, nmake, MSBuild

9

C++ Binary Dependency Management with Gradle

● Why?
– Dependency Management is hard

● learn from others

– Groovy DSLs are developer-friendly
● … more than Ant or MSBuild, at least!

– Not much else in 2013
● See later for 2017 udpate

10

C++ Binary Dependency Management with Gradle

● How? “The Holy Gradle” plugins
– ZIP artifacts

● Unpack cache + symlinks in project workspace
– Offline repo export (for disconnected sites)
– Source dependencies

● Multiple source repo graph
● Binaries published together
● Build & test all

– Windows Credential Store integration
– … currently stuck on Gradle 1.4 :-/

11

C++ Binary Dependency Management with Gradle

buildscript {
 gplugins.use "intrepid-plugin:7.7.2"
}
gplugins.apply()

group = "com.example-corp.teamA"
version = System.getenv("NEXT_VERSION_NUMBER") ?: Project.DEFAULT_VERSION

repositories.ivy {
 url "http://artifactory-server/artifactory/libs-release"
 credentials {
 username my.username("Artifactory")
 password my.password("Artifactory")
 }
}

configurationsSets {
 main { type configurationSetTypes.DLL_64 }
 test {
 type configurationSetTypes.EXE_64
 prefix "test"
 }
}

12

C++ Binary Dependency Management with Gradle

sourceDependencies {
 framework {
 git "http://git-server/path/to/framework"
 configurationSet configurationSets.main, configurationSetTypes.DLL_64
 }
 doc {
 svn "http://hg-server/path/to/my-doc"
 // No configuration mapping because it's not buildable, just doc.
 }
}

packedDependencies {
 "dep/RenderingLib" {
 dependency "com.example-corp.rendering:RenderingLib:2012a2"
 configurationSet configurationSets.main, configurationSetTypes.LIB_64
 }
 "dep/NUnit" {
 dependency "org.nunit:NUnit:2.5.10"
 def testRuntimeConfs = configurationSets.test.configurationNamesMap.findAll { k, v ->
 k[stage] == 'runtime'
 }
 configuration "${testRuntimeConfs.join(',')}->bin"
 unpackToCache = false
 }
}

13

C++ Binary Dependency Management with Gradle

packageArtifacts {
 import_common {
 include "src/**/*.h"
 }
 configurationSets.main.axes['Configuration'].each { conf ->
 "import_x64_${conf}" {
 include "lib/${conf}/*.lib"
 }
 "runtime_x64_${conf}" {
 include "bin/${conf}/*.dll"
 }
 "debugging_x64_${conf}" {
 include "bin/${conf}/*.pdb"
 }
 }
}

publishPackages {
 repositories.ivy {
 credentials {
 username my.username("Artifactory")
 password my.password("Artifactory")
 }
 url "http://artifactory-server/artifactory/my-integration-repo-local/"
 }
}

14

C++ Binary Dependency Management with Gradle

● Future …?
– Binary → source replacement in workspace
– Update to Gradle 2.x/3.x

● Java 8; better performance; CMake-alike for C/C++
● Kotlin for statically-checked build scripts!

– Publicly buildable
– Publicly published
– Auto-generate deploy scripts
– Auto-generate MSBuild or CMake fragments

15

C++ Binary Dependency Management with Gradle

● NuGet
– Support for native variants still poor
– Best with Visual Studio (but modifies projects)
– Multiple copies of binaries
– No source packages

● Biicode
– Defunct

16

C++ Binary Dependency Management with Gradle

● conan.io
– Use CMake or invent your own workspace integration
– Source and binary packages
– Written in Python
– Artifactory support

● vcpkg
– Source builds only
– Visual Studio only

17

C++ Binary Dependency Management with Gradle

● Links
– https://holygradle.bitbucket.io
– https://bitbucket.org/nm2501/holy-gradle-plugins
– https://docs.gradle.org/1.4/userguide/userguide.html
– https://www.jfrog.com/confluence/display/RTF

● Questions?

https://holygradle.bitbucket.io/
https://bitbucket.org/nm2501/holy-gradle-plugins
https://docs.gradle.org/1.4/userguide/userguide.html
https://www.jfrog.com/confluence/display/RTF

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

