
QT3D’S ECS
AN ENTITY-COMPONENT SYSTEM IN C++
AND QT - JAMES TURNER

INTRODUCTION

JAMES TURNER

▸ C++ and OpenGL developer

▸ Consultant in Qt for ten years, currently at KDAB

▸ Maintainer of open-source FlightGear simulator

▸ Can also lift people above my head

QT3D

QT3D

▸ 3D visualisation engine built using Qt & C++11

▸ Data-driven scenes and rendering architecture

▸ Integration of possible simulation domains

▸ Rendering, physics, animation, input, audio, networking

▸ Arbitrary user-supplied domains

▸ Called ‘aspects’ in Qt3D

QT3D

WHY QT3D

▸ Recurring need for modern visualisation & simulation
framework at KDAB

▸ Frustration with existing visualisation / scene toolkits

▸ Embedded, industrial and scientific users wary of
incorporating a game engine

▸ Data-driven rendering architecture

▸ Comparatively light-weight

WHY AN ENTITY-COMPONENT SYSTEM

MOTIVATION

▸ Simulation architectures involve a collection of entities with
behaviours & properties

▸ Most entities use some subset of the behaviours and properties
available

▸ Different developers may want to extend, replace or reuse
standard behaviours

▸ Frameworks are only useful if you can reuse most of the
architecture!

▸ Potential design patterns to deliver this in C++?

NON-SOLUTIONS

INHERITANCE GRAPHS

▸ Traditional OOP class hierarchy design

▸ Fix functionality at points in the hierarchy

▸ Common functionality rises higher and higher

▸ Multiple inheritance to aggregate functionality

▸ But avoid diamond-inheritance graphs

▸ Use mix-in interfaces to improve somewhat

NON-SOLUTIONS

POSSIBLE CLASS HIERARCHY

SoundEmitter PhysicalThing

GameThing

Trigger Renderable

Mobile

PlayerNPC

Prop

Scripted Item

PhysicalRenderableScriptedSoundThing

CONCEPTUAL ECS

BASIC ECS PRINCIPLES

▸ Composition replaces inheritance

▸ Entity is container for disparate components

▸ Might be purely an ID, and C++ representation is generic

▸ Component is data (properties) describing some piece of functionality

▸ Pertinent to one or several simulation systems (aspects)

▸ Entity is a collection of components

▸ Runtime behaviour of each entity derives entirely from its components

CONCEPTUAL ECS

EXAMPLE LAYOUT

Entity

Sound
Emitter

Render
Mesh

Collision
Trigger

Physics
Body

Entity

Sound
Emitter

Render
Mesh

Entity

Render
Mesh

Scripted
Logic

Particle
Emitter

CONCEPTUAL ECS

COMPONENT PRINCIPLES

▸ Fine-grained functionality

▸ SoundEmitter, PhysicalMass, TriangleMesh, Material,
ScriptedAnimation

▸ Component is data-only

▸ Aspects contain code to process components

▸ Different aspects can use the same component

▸ Components can be added and removed at run-time

HISTORY

ECS EVOLUTION AND USE

▸ Thief and Dungeon Keeper pioneered use of an ECS for
games

▸ GDC presentations, Unity and ‘Game Design Patterns’
brought concept into public view

▸ Most game engines now use an ECS, e.g. Lumberyard,
XNA

▸ Outside the gaming world, things progress more slowly

DESIGNING THE ECS

QT3D ECS DESIGN GOALS

▸ All aspects are optional

▸ Easy to integrate existing logic as custom aspects

▸ Leverage existing Qt property system

▸ Use existing QML declarative language for defining / binding
properties

▸ Mix-and-match C++ and QML defined entities

▸ Aggressive support for threading and dependencies between aspects

▸ Manage non-blocking threading inside the aspects

DESIGNING THE ECS

CORE CLASSES

▸ Qt defines QObject

▸ Base class for Qt-level features such as properties, introspection
and signals / slots

▸ Qt3D extends this to QNode

▸ Base for ECS objects, manages threading and state updating

▸ QEntity and QComponent subclasses

▸ Nodes have unique ID, parents & children

▸ Entities have components

C++ API

 Qt3DRender::QMaterial *material =
new Qt3DExtras::QPhongMaterial(rootEntity);

 // Torus
 Qt3DCore::QEntity *torusEntity = new Qt3DCore::QEntity(rootEntity);
 Qt3DExtras::QTorusMesh *torusMesh = new Qt3DExtras::QTorusMesh;
 torusMesh->setRadius(5);
 torusMesh->setMinorRadius(1);
 torusMesh->setRings(100);
 torusMesh->setSlices(20);

 Qt3DCore::QTransform *torusTransform = new Qt3DCore::QTransform;
 torusTransform->setScale3D(QVector3D(1.5, 1, 0.5));
 torusTransform->setRotation(QQuaternion::fromAxisAndAngle(

QVector3D(1, 0, 0), 45.0f));

 torusEntity->addComponent(torusMesh);
 torusEntity->addComponent(torusTransform);
 torusEntity->addComponent(material);

USE IN PRACTICE

INSTANCES & PROTOTYPES

▸ ECS supports a prototype concept, not inheritance

▸ Any entity with appropriate components can be considered conforming to
some interface (drawable, physical simulated, etc)

▸ Creating new components is rare, defining new entities with particular
components and data values is common

▸ ‘Subclassing’ means using using one entity definition as a prototype and
adding components or changing properties

▸ Unlike C+ inheritance, this process can be applied to any instance at any time

▸ When many entities are copies (instances) of some prototype, component data
can be shared via Copy-on-Write or explicit sharing

USE IN PRACTICE

BENEFITS OF USING QOBJECT

▸ Standard ECS has data-only components

▸ Different solutions to intra-component communication

▸ Expose additional state to pass between aspects

▸ Add messaging concept to each entity

▸ Qt already has signals & slots

▸ Configured at runtime

▸ Excellent match for linking components together

DESIGNING THE ECS

MAKING IT THREADED

▸ Modern framework requires good use of multi-core CPUs

▸ High-level APIs should not expose threading complexity

▸ Expose single-threaded public API to ECS users in C++, QML, etc

▸ Split components in two

▸ Front-end classes are lightweight

▸ Back-end classes must synchronise state with their front-end peers and
each other

▸ Writing components is more complicated

▸ Core system manages mirroring of tree structure and messaging

DESIGNING THE ECS

ASPECT INTERFACE

▸ Aspects loaded from plugin

▸ Supply collection of component classes

▸ Front-end and backend implementation

▸ API is largely through component properties

▸ Engine queries each aspect for runnable jobs

▸ Notional simulation tick / frame

▸ Jobs have execution dependencies

▸ Frame is complete when all jobs have run

USE IN PRACTICE

C++ API

▸ Design goal to support natural C++ and QML APIs

▸ C++ API is verbose but straightforward

▸ Scope to improve this considerably if desired

▸ When using existing components, threading is handled
automatically

▸ Creating custom components needs awareness of
asynchronous events between the front-end and
backend.

IMPLEMENTATION DETAILS

FRONT-END / BACK-END

▸ Nodes have unique ID

▸ Front-end components are light-weight

▸ Expose pleasant API to C++, QML

▸ Backend peer objects constructed automatically

▸ Changes to properties and structure generate events

▸ Periodically dispatched to backend

▸ Backend node hierarchy state is synchronised

▸ Aspects notified about changes

IMPLEMENTATION DETAILS

MANAGING CHANGE

▸ Different kinds of change

▸ Properties changing on components

▸ Scene entity hierarchy changing

▸ Add, destroy and re-parent

▸ Adding or remove components dynamically

▸ Changes come from the front-end or backend

▸ Different propagation behaviour

▸ Ensure aspect is not processing jobs before processing changes

IMPLEMENTATION DETAILS

CODE…

IMPLEMENTATION DETAILS

RUNNING JOBS

▸ Job scheduling problem

▸ Originally we used ThreadWeaver

▸ Worked very well!

▸ Intel Thread Building Blocks also solves this nicely

▸ Licence & dependency concerns prompted switch to an internal solution

▸ Considerable scope for further development

▸ CPU intensive aspects

▸ Compute (OpenCL) aspects

FUTURE DIRECTIONS

TOOLING

▸ ECS maps well to generic visual tooling

▸ Non-coders can compose entities, set properties,
publish and import libraries of entities

▸ Qt signals/slots support introspection, so can also be
connected up via tooling UI

▸ Tooling is considerable work

▸ Being planned at the moment

CONCLUSIONS

ECS FTW

▸ ECS has delivered on its premise

▸ Creating prototype aspects is straightforward

▸ Excellent isolation of code & data between aspects

▸ Least contentious design decision in Qt3D

▸ Combining the front/back-end split with the ECS increased
complexity

▸ For a narrower target application, potentially excessive

▸ Hopefully future-proof, scalable and developer-friendly

CONCLUSIONS

DONE

▸ Thanks for listening!

▸ Try out Qt3D in Qt 5.7 or 5.8

▸ james@kdab.com

▸ Questions?

