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INTRODUCTION

JAMES TURNER

▸ C++ and OpenGL developer 

▸ Consultant in Qt for ten years, currently at KDAB 

▸ Maintainer of open-source FlightGear simulator 

▸ Can also lift people above my head



QT3D

QT3D

▸ 3D visualisation engine built using Qt & C++11 

▸ Data-driven scenes and rendering architecture 

▸ Integration of possible simulation domains 

▸ Rendering, physics, animation, input, audio, networking 

▸ Arbitrary user-supplied domains 

▸ Called ‘aspects’ in Qt3D



QT3D

WHY QT3D

▸ Recurring need for modern visualisation & simulation 
framework at KDAB 

▸ Frustration with existing visualisation / scene toolkits 

▸ Embedded, industrial and scientific users wary of 
incorporating a game engine 

▸ Data-driven rendering architecture 

▸ Comparatively light-weight



WHY AN ENTITY-COMPONENT SYSTEM

MOTIVATION

▸ Simulation architectures involve a collection of entities with 
behaviours & properties 

▸ Most entities use some subset of the behaviours and properties 
available 

▸ Different developers may want to extend, replace or reuse 
standard behaviours 

▸ Frameworks are only useful if you can reuse most of the 
architecture! 

▸ Potential design patterns to deliver this in C++?



NON-SOLUTIONS

INHERITANCE GRAPHS

▸ Traditional OOP class hierarchy design 

▸ Fix functionality at points in the hierarchy 

▸ Common functionality rises higher and higher 

▸ Multiple inheritance to aggregate functionality 

▸ But avoid diamond-inheritance graphs 

▸ Use mix-in interfaces to improve somewhat



NON-SOLUTIONS

POSSIBLE CLASS HIERARCHY

SoundEmitter PhysicalThing

GameThing

Trigger Renderable

Mobile

PlayerNPC

Prop

Scripted Item

PhysicalRenderableScriptedSoundThing



CONCEPTUAL ECS

BASIC ECS PRINCIPLES

▸ Composition replaces inheritance 

▸ Entity is container for disparate components 

▸ Might be purely an ID, and C++ representation is generic 

▸ Component is data (properties) describing some piece of functionality 

▸ Pertinent to one or several simulation systems (aspects) 

▸ Entity is a collection of components 

▸ Runtime behaviour of each entity derives entirely from its components



CONCEPTUAL ECS

EXAMPLE LAYOUT
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CONCEPTUAL ECS

COMPONENT PRINCIPLES

▸ Fine-grained functionality 

▸ SoundEmitter, PhysicalMass, TriangleMesh, Material, 
ScriptedAnimation 

▸ Component is data-only 

▸ Aspects contain code to process components 

▸ Different aspects can use the same component 

▸ Components can be added and removed at run-time



HISTORY

ECS EVOLUTION AND USE

▸ Thief and Dungeon Keeper pioneered use of an ECS for 
games 

▸ GDC presentations, Unity and ‘Game Design Patterns’ 
brought concept into public view 

▸ Most game engines now use an ECS, e.g. Lumberyard, 
XNA 

▸ Outside the gaming world, things progress more slowly



DESIGNING THE ECS

QT3D ECS DESIGN GOALS

▸ All aspects are optional 

▸ Easy to integrate existing logic as custom aspects 

▸ Leverage existing Qt property system 

▸ Use existing QML declarative language for defining / binding 
properties 

▸ Mix-and-match C++ and QML defined entities 

▸ Aggressive support for threading and dependencies between aspects 

▸ Manage non-blocking threading inside the aspects



DESIGNING THE ECS

CORE CLASSES

▸ Qt defines QObject 

▸ Base class for Qt-level features such as properties, introspection 
and signals / slots 

▸ Qt3D extends this to QNode 

▸ Base for ECS objects, manages threading and state updating 

▸ QEntity and QComponent subclasses 

▸ Nodes have unique ID, parents & children 

▸ Entities have components



C++ API

    Qt3DRender::QMaterial *material = 
new Qt3DExtras::QPhongMaterial(rootEntity);

    // Torus
    Qt3DCore::QEntity *torusEntity = new Qt3DCore::QEntity(rootEntity);
    Qt3DExtras::QTorusMesh *torusMesh = new Qt3DExtras::QTorusMesh;
    torusMesh->setRadius(5);
    torusMesh->setMinorRadius(1);
    torusMesh->setRings(100);
    torusMesh->setSlices(20);

    Qt3DCore::QTransform *torusTransform = new Qt3DCore::QTransform;
    torusTransform->setScale3D(QVector3D(1.5, 1, 0.5));
    torusTransform->setRotation(QQuaternion::fromAxisAndAngle(

QVector3D(1, 0, 0), 45.0f));

    torusEntity->addComponent(torusMesh);
    torusEntity->addComponent(torusTransform);
    torusEntity->addComponent(material);



USE IN PRACTICE

INSTANCES & PROTOTYPES

▸ ECS supports a prototype concept, not inheritance 

▸ Any entity with appropriate components can be considered conforming to 
some interface (drawable, physical simulated, etc) 

▸ Creating new components is rare, defining new entities with particular 
components and data values is common 

▸ ‘Subclassing’ means using using one entity definition as a prototype and 
adding components or changing properties 

▸ Unlike C+ inheritance, this process can be applied to any instance at any time 

▸ When many entities are copies (instances) of some prototype, component data 
can be shared via Copy-on-Write or explicit sharing



USE IN PRACTICE

BENEFITS OF USING QOBJECT

▸ Standard ECS has data-only components 

▸ Different solutions to intra-component communication 

▸ Expose additional state to pass between aspects 

▸ Add messaging concept to each entity 

▸ Qt already has signals & slots 

▸ Configured at runtime 

▸ Excellent match for linking components together



DESIGNING THE ECS

MAKING IT THREADED

▸ Modern framework requires good use of multi-core CPUs 

▸ High-level APIs should not expose threading complexity 

▸ Expose single-threaded public API to ECS users in C++, QML, etc 

▸ Split components in two 

▸ Front-end classes are lightweight 

▸ Back-end classes must synchronise state with their front-end peers and 
each other 

▸ Writing components is more complicated 

▸ Core system manages mirroring of tree structure and messaging



DESIGNING THE ECS

ASPECT INTERFACE

▸ Aspects loaded from plugin 

▸ Supply collection of component classes 

▸ Front-end and backend implementation 

▸ API is largely through component properties 

▸ Engine queries each aspect for runnable jobs 

▸ Notional simulation tick / frame 

▸ Jobs have execution dependencies 

▸ Frame is complete when all jobs have run



USE IN PRACTICE

C++ API

▸ Design goal to support natural C++ and QML APIs 

▸ C++ API is verbose but straightforward 

▸ Scope to improve this considerably if desired 

▸ When using existing components, threading is handled 
automatically 

▸ Creating custom components needs awareness of 
asynchronous events between the front-end and 
backend.



IMPLEMENTATION DETAILS

FRONT-END / BACK-END

▸ Nodes have unique ID 

▸ Front-end components are light-weight 

▸ Expose pleasant API to C++, QML 

▸ Backend peer objects constructed automatically 

▸ Changes to properties and structure generate events 

▸ Periodically dispatched to backend 

▸ Backend node hierarchy state is synchronised 

▸ Aspects notified about changes



IMPLEMENTATION DETAILS

MANAGING CHANGE

▸ Different kinds of change 

▸ Properties changing on components 

▸ Scene entity hierarchy changing 

▸ Add, destroy and re-parent 

▸ Adding or remove components dynamically 

▸ Changes come from the front-end or backend 

▸ Different propagation behaviour 

▸ Ensure aspect is not processing jobs before processing changes



IMPLEMENTATION DETAILS

CODE…



IMPLEMENTATION DETAILS

RUNNING JOBS

▸ Job scheduling problem 

▸ Originally we used ThreadWeaver 

▸ Worked very well! 

▸ Intel Thread Building Blocks also solves this nicely 

▸ Licence & dependency concerns prompted switch to an internal solution 

▸ Considerable scope for further development 

▸ CPU intensive aspects 

▸ Compute (OpenCL) aspects



FUTURE DIRECTIONS

TOOLING

▸ ECS maps well to generic visual tooling 

▸ Non-coders can compose entities, set properties, 
publish and import libraries of entities 

▸ Qt signals/slots support introspection, so can also be 
connected up via tooling UI 

▸ Tooling is considerable work 

▸ Being planned at the moment



CONCLUSIONS

ECS FTW

▸ ECS has delivered on its premise 

▸ Creating prototype aspects is straightforward 

▸ Excellent isolation of code & data between aspects 

▸ Least contentious design decision in Qt3D 

▸ Combining the front/back-end split with the ECS increased 
complexity 

▸ For a narrower target application, potentially excessive 

▸ Hopefully future-proof, scalable and developer-friendly



CONCLUSIONS

DONE

▸ Thanks for listening! 

▸ Try out Qt3D in Qt 5.7 or 5.8 

▸ james@kdab.com 

▸ Questions?


