THE Z-CURVE AND
STANDARD
CONTAINERS

PHIL ENDECOTT

PHIL ENDECOTT

phil@chezphil.org

UK Map App Topo Maps

mailto:phil@chezphil.org

Zhkm

"W

Altitude \ [“Baiancs |

i et e
YT ReT
Bere [yhe
o' Mrgn

MOTIVATING PROBLEM

STORE A SET OF 2D POINTS SUCH THAT WE CAN EFFICIENTLY
ITERATE OVER THE CONTENT OF AN AXIS-ALIGNED RECTANGLE.

MOTIVATING PROBLEM

COMPUTATIONAL COMPLEXITY

* |f there are N items in the container and M items in the rectangle,
the complexity of iterating those M items has:

* alower bound of O(M)

* an upper bound of O(N)

STANDARD CONTAINERS ARE GREAT

std::vector, std::list, std::set, std::map
Available everywhere

Everyone understands them

Quality implementations

Well documented

Have the right computational complexity etc.

Work with standard algorithms

STANDARD CONTAINERS ARE GREAT

AND OTHER CONTAINERS BORROW THEIR GREAT FEATURES

boost::flat_set, flat_map

boost::intrusive
boost::interprocess
boost::container::static_vector, small vector

Google's in-memory b-tree

BUT....

Standard associative containers require an ordering predicate, i.e.
operator<

This is inherently one-dimensional

Most often, multidimensional data is stored in specialised
containers

MULTIDIMENSIONAL CONTAINERS

* Few good open-source implementations
* Inherently complex

* Not obvious which data structure to use

ADAPTERS

Can we create an adapter that wraps a 1D associative container so
that it stores 2D data?

adapt2d< std::map<point,foo> >
adapt2d< boost::flat_map<point,foo> >

adapt2d< boost::intrusive::map<foo> >

SPACE FILLING CURVES

SPACE FILLING CURVES

-

[

SPACE FILLING CURVES

Curve is defined by a function that converts (x,y) to a distance
along the curve, which is one-dimensional

(And the inverse function)

ldea is that we use the distance along the curve with the ordering
predicate in a standard 1D container

WHICH CURVE TO USE?®

THERE ARE PLENTY TO CHOOSE FROM

w) GF oodi b Serpentine OFF 010 1 o

(e 1 5 | =
.A)U}l;..

i

o

WHICH CURVE TO USE?®

HERE ARE TWO OF MY FAVOURITES

Journal of Computational Geometry jocg.org

\ - AN -/
LN/ ,
i VA
‘:‘ -" Journal of Computational Geometry

ANEC RN,
7
-\

LSRN/
AR

Figure 2: A recursive tiling into trapez

a recursive tiling based on trapezoids, expanded down to the l¢
at most one data point. We store the data points in such a wi
level of recursion, the data points within that tile are stored g

Figure 10: Definition of the Daun tiling, and level-two expansion. Figure 22 at the end of

this article shows the level-three expansion.

Proof. We have a > 1, otherwise we would get a regular grid of squares with Arrwwid
P . - » P - S / Iy
number four. Therefore the solution to Equation 2 for which ny, > 0, must have n;, < V1

and a = (t—n) /1y M
« . v kit // wh- LJ

The above two lemmas brought an exhaustive search for increasing values of ¢ within
reach, trving all eligible values of a for each £. This led to the following result:

Theorem 3. The smallest uniform rectangular tiling (uith fewest tiles in the definiming
#7. R 1 'S e P L Y AR | . re

WHICH CURVE TO USE?®

EXPERTS HAVE TRIED TO MEASURE THEIR PROPERTIES

Order WL WL, WL, |WBA ABA WBP ABP [WOA AOA i\\or [IAD ..

Sierpinski-knopp order 4 4 8 3.000 1.78 13.000 1.42 |[1.789 1.25 |1.629 | 1”?’7 3
Balanced GP l.Gl.fJ l(»l‘) ’shlf) 2000 1.44 {2,155 1.19 ||1.769 1.31 |1.807 |/1.72'

GP (Serp. 000000000) |8 8 102 [[2.000 1.44 (2722 1.28 [[1.835 1.32 [2.395 (213"

Serpentine 011 010110 5.625 6.250 10,000 |2.500 1447 2500 1.20 12,222 1.32" 12036 | 1.7

Luxburg 2 (101010101) |5%& 6 10 2500 1.49 (2500 1.24 [[2.222 1.35° |2.036 ||1.81

\1euruu-(uonol10) 333 5.667 10.667 |[2.500 1.41" 12,667 1.17 |[2.000 1.30° [2.018 |/1.64'

Coil (Serp. 111111111) 1624 624 102/ (2500 1.41° (2667 1.17 [|2.222 1.29" [2.424 | 1.63'

Hilbert 6 6 0 2400 1.44 2400 1.19 [[1.929 1.30 [1.955 [1.67 |
36 5000 5.000 9.000 /2.222 1.42 12250 1.17 [|1.800 1.29 [1.933 |1.64'

AR*W? 5400 6.046 12.000 |[3.055 1.49 [3.125 1.22 |[2.344 1.33 |2.255 [1.70'

Z-order x x x o 292 |oo 240" || o 246 | oo ||3.80"
Gosper flowsnake 1635 635 12.70 ||>3.18 1>3.18 | |

Table 1: Bounds for different measures and curves. New curves printed in bold. For the A-
measures the standard deviation is indicated behind the number: no symbol when less than
0.5%: one mark when between 0.5% and 1.0%. two marks when between 1.0% and 2.0%.

even better locality in these measures than Luxburg's second variant (Serpentine 101 010 101).
Even better locality is achieved by Wiernm’s #Q-curve (matching or improving on Hilbert’s
curve in all measures) and still better by our new Peano variant: balanced GP. The latter
approaches the locality of the Sierpinski-Knopp order, which is still conjectured to be optimal,

However, it appears that the optimal locality of the bu'rpm\kl-l\lmm) Ul‘(ltl‘ comes at a

PAS oo __2a . LWL WS - 2 S O s 1] LS | Dl Y, RS EEwaIA . S S~ - * . . AN 'O (5 L

BUT IN PRACTICE....

The functions that define those exotic-looking curves, and their
inverses, are horribly complex and slow to compute.

| suppose you might consider using them if lookup were
particularly slow, e.g. over the 'net.

In practice there is only one curve considering.

(Or maybe two)

ASIDE: RASTER SCAN ORDER

Is this a space-filling curve?
It's not fractal
It's what you get if you store a std::pair in a std::set

It's still a useful way of ordering data in some cases

THE "Z" OR MORTON CURVE

/

THE "Z" OR MORTON CURVE

It looks like a fractal "Z" if you use the wrong coordinate system.

Unlike the Hilbert, Peano and other complex curves it has edges
of greater than unit length.

It's easy to compute: you just bitwise-interleave the X and Y
values:

= 1010 X=0110

N\

Z=10011100

BITWISE INTERLEAVING

* Quickest way to (de-)interleave seems to be a 256-byte lookup
table.

* In the container you can store:
e The interleaved value

e The non-interleaved values

e Both

NOT BITWISE INTERLEAVING

discovered:

» A few years after implementing an adaptor based on that, |

Closest-Point Problems Simplified on the RAM

Timothy

Hasic praximity problems for low dimensional point
weln, such as chosest pair (CF) and approximale near
sl meaghbor (ANN), have been studied extensavely in
the cosnputational geonwtey Lterature, with well oner &
hundred papers published (we merely cite the survey bn
Stnid [and omit most references). Generally, opti-
mal algorithins designed for worst-case inpat require hi
erarchical spatial structures with sophisticated balane
ing conditions (we mention, for example, the BRI trees
of Arya «f ol balanced quadtrees, amd Callahan and
Kosarasu's [aic-split trees): dynamization of Hhese stric
tires is evens more snvodved (relving on Sleator and Tar
iun'\ d}tuluiu' trees of Prederickson's lupu’ug) trees).

In this note, we puiul out that mwuch simpler al
gorithms with the same performance are possible nsing
standard, though nosalgebraic, RAM operations. This
1= interesting, considering that monalgebraic operations
have bevn weex] helore in the literature (e, in the orig.
inal version of the BHD tree (2],

randomized CF methouds),

ax well ax i varomss

The CF algorithim can be stated completely in ane

paragraph.

Lsstine coordinntes are positive integers

' M. Chan®

r lies in a quadtree box of diameter Ofr) after some
shift (6]
Fhis algorithm = not ongioal, The approximate

version was mest recently proposed by Loper amd
Lino (7, 8], although sorting aloag shuffle order, o gen-
crally space-Blling curves, has boen suggested often in
other apphied areas soch as databases and pattern recog
mition. In compatational geametry, it was used by Bern
et ol [3] (for constructing unbalamced and balanced
quadtrees, which we are trying to do without here), but
s largely overlooked as a theoretical 1ood {hence the rea
som for writing this note), Shilting, on the other hand,
is & well-known technique in approximation,

Owe objection is that we can’t directly compute
Tipl.
straight forward procedure:

Bt we can decide whether alp) < olg) by a

i = 12

for j=24.....ddo
Wiy Sl < iy

refurn < q,.

gyl then @ & 55

Here denotes bitwise exclusive-or and x| denoltes

NOT BITWISE INTERLEAVING

template <typename POINT>
bool z less(POINT a, POINT Db)
{
auto xdif = a.x © b.x, ydif = a.y © b.y;
1f (ydif <= xdif && ydif < (xdif = ydif))
return a.x < b.Xx;
else

return a.y < b.y;

NOT BITWISE INTERLEAVING

* std::map< Point, foo, zless<Point> >

ALL DONE?
(NO)

e There is more to do in order to iterate over the content of a

rectangular region, because generally the curve extends outside
the rectangle.

* A useful property of the Z curve is that the curve is constrained

between the bottom-left and top-right of the rectangle:

M Ay

THINKING OUTSIDE THE BOX

Visiting everything between MIN and MAX will visit everything in
the box

But also potentially lots of other things.

One option is simply to filter out those things when they are
encountered.

MAy

HOW FAR OUTSIDE THE BOXz@
SOMETIMES THE CURVE DOESN'T WANDER FAR

HOW FAR OUTSIDE THE BOXz@

IF YOUR BOX STRADDLES A LARGE POWER OF TWO IT WILL
GO TO THE MOON AND BACK

' '\ &
RN

g \
N \‘Q
:H‘i,\‘:\:“.é e |

, " "‘w'(‘ & \’ .;.‘4
" d ;,\"~\\ X

3\

»
-

, \
A ‘\’S IAYD}\}‘\
f ' = . | '

HOW FAR OUTSIDE THE BOXz@

« Maybe the length of curve outside the box is (amortised) bounded
by some multiple of the size of the box, or something?

* No, sorry :-(

KEEPING IT IN THE BOX

* One option is to divide your box into 4 sub-ranges, splitting at the
multiples of the largest powers of two

KEEPING IT IN THE BOX

* This limits the visited space to four times the area of the box, if
the box is square.

KEEPING IT IN THE BOX

But the area visited is less important than the number of items
visited, unless the items are uniformly distributed.

Consider a cluster of items just outside a box which is itself almost
empty.

Computational complexity is worst case O(N)

BIGMIN

The alternative way to constrain the iteration to the box is the so-
called "BIGMIN" function.

It dates from the original FORTRAN implementation when
identifiers of more than six characters were considered witchcraft.

No-one understands how it works, but it does.

BIGMIN

* Given a rectangle, and a point that's outside the rectangle but on
the rectangle's Z-curve, BIGMIN returns the next point on the Z-
curve that is on the boundary of the rectangle.

* So when iteration reaches an item that's outside the rectangle we
apply BIGMIN and then skip forward, bypassing any other items
on the same "loop".

» Skipping forward is probably O(log N).

BICGMIN decision tablke

P —c

r

. Devaling
record-
ode

Actual 3t of

Range
MRy
cole

No actioa ; conlinue.,

BIGMIN = LOAD (M1000...", MIN);

MAX = LOAD (MO111...%, MAX)

continoe.

This case not possibie because MIN < = MAX,
BICMIN = MIN, finish,

Finith,

MIN = LOAD ("1000...", MIN); continue. b
This case aot possible because MIN < = MAX,
NO acthoa; continue,

BEST CASE FOR BIGMIN

» Thinking about the "loops"

outside the box, BIGMIN works
best when there are:

» Short loops with no items
on them:;

* Long loops with many items

that can all be skipped in
one go.

 This is what should happen with
a fractal curve like the Z-curve.

It's exactly what doesn't happen
with raster scan.

WORST CASE FOR BIGMIN

* The worst case is when there is just one item on each "loop".

e This is worse than just filtering out these items - it makes the
iteration O(N log N) rather than O(N)

LINEAR LOWER BOUND

« A variant of std::lower bound that does a short linear search
before falling back to the logarithmic search.

 If you use it to iterate through the whole container,
complexity is better than O(N).

» Kludge needed to work with std::map's member
lower_bound.

A 2D CONTAINER ADAPTER

Point and Rectangle classes.
Two "magic" Z-curve functions, z_less and bigmin.
linear_lower_bound.

Type metafunction to change associative container's comparison
to z_less.

adapt2d template.

Iterator using boost::iterator_facade

CODE

http://chezphil.org/tmp/adapt2d.cc

http://chezphil.org/tmp/adapt2d.cc

CONCLUSIONS

I've been using this technique for storing 2D data for about 10 years.

| think its greatest strength is that you can apply it to many different
underlying containers. |'ve used:

* Read-only memory-mapped files.

* Flat maps (i.e. sorted vectors).

* Containers with special allocators.
Performance is good in practice.

But worst-case computational complexity is O(N).

REFERENCES

» Good starting point for space filling curves in general:

http://www.win.tue.nl/~hermanh/doku.php?
id=recursive_tilings_and_space-filling_curves

* An early paper describing how to use the Z-curve, including the
BIGMIN function:

Tropf, H.; Herzog, H. (1981), "Multidimensional Range Search
in Dynamically Balanced Trees", Angewandte Informatik 2: 71-
77

¢ How to order points without actually interleaving the bits:

Chan, T. (2002), "Closest-point problems simplified on the
RAM", ACM-SIAM Symposium on Discrete Algorithms.

http://www.win.tue.nl/~hermanh/doku.php?id=recursive_tilings_and_space-filling_curves

