
THE Z-CURVE AND
STANDARD

CONTAINERS

PHIL ENDECOTT

PHIL ENDECOTT

Topo MapsUK Map App

phil@chezphil.org

mailto:phil@chezphil.org

DONEC QUIS NUNC

MOTIVATING PROBLEM

STORE A SET OF 2D POINTS SUCH THAT WE CAN EFFICIENTLY
ITERATE OVER THE CONTENT OF AN AXIS-ALIGNED RECTANGLE.

COMPUTATIONAL COMPLEXITY

MOTIVATING PROBLEM

• If there are N items in the container and M items in the rectangle,
the complexity of iterating those M items has:

• a lower bound of O(M)

• an upper bound of O(N)

STANDARD CONTAINERS ARE GREAT

• std::vector, std::list, std::set, std::map

• Available everywhere

• Everyone understands them

• Quality implementations

• Well documented

• Have the right computational complexity etc.

• Work with standard algorithms

AND OTHER CONTAINERS BORROW THEIR GREAT FEATURES

STANDARD CONTAINERS ARE GREAT

• boost::flat_set, flat_map

• boost::intrusive

• boost::interprocess

• boost::container::static_vector, small_vector

• Google's in-memory b-tree

BUT....

• Standard associative containers require an ordering predicate, i.e.
operator<

• This is inherently one-dimensional

• Most often, multidimensional data is stored in specialised
containers

MULTIDIMENSIONAL CONTAINERS

• Few good open-source implementations

• Inherently complex

• Not obvious which data structure to use

ADAPTERS

• Can we create an adapter that wraps a 1D associative container so
that it stores 2D data?

• adapt2d< std::map<point,foo> >

• adapt2d< boost::flat_map<point,foo> >

• adapt2d< boost::intrusive::map<foo> >

SPACE FILLING CURVES

SPACE FILLING CURVES

SPACE FILLING CURVES

• Curve is defined by a function that converts (x,y) to a distance
along the curve, which is one-dimensional

• (And the inverse function)

• Idea is that we use the distance along the curve with the ordering
predicate in a standard 1D container

THERE ARE PLENTY TO CHOOSE FROM

WHICH CURVE TO USE?

HERE ARE TWO OF MY FAVOURITES

WHICH CURVE TO USE?

EXPERTS HAVE TRIED TO MEASURE THEIR PROPERTIES

WHICH CURVE TO USE?

BUT IN PRACTICE....

• The functions that define those exotic-looking curves, and their
inverses, are horribly complex and slow to compute.

• I suppose you might consider using them if lookup were
particularly slow, e.g. over the 'net.

• In practice there is only one curve considering.

• (Or maybe two)

ASIDE: RASTER SCAN ORDER

• Is this a space-filling curve?

• It's not fractal

• It's what you get if you store a std::pair in a std::set

• It's still a useful way of ordering data in some cases

THE "Z" OR MORTON CURVE

THE "Z" OR MORTON CURVE

• It looks like a fractal "Z" if you use the wrong coordinate system.

• Unlike the Hilbert, Peano and other complex curves it has edges
of greater than unit length.

• It's easy to compute: you just bitwise-interleave the X and Y
values:

X = 0 1 1 0Y = 1010

Z = 1 0 0 1 1 1 0 0

BITWISE INTERLEAVING

• Quickest way to (de-)interleave seems to be a 256-byte lookup
table.

• In the container you can store:

• The interleaved value

• The non-interleaved values

• Both

NOT BITWISE INTERLEAVING
• A few years after implementing an adaptor based on that, I

discovered:

NOT BITWISE INTERLEAVING

template <typename POINT>
bool z_less(POINT a, POINT b)
{
 auto xdif = a.x ^ b.x, ydif = a.y ^ b.y;
 if (ydif <= xdif && ydif < (xdif ^ ydif))
 return a.x < b.x;
 else
 return a.y < b.y;
}

NOT BITWISE INTERLEAVING

• std::map< Point, foo, zless<Point> >

(NO)

ALL DONE?

• There is more to do in order to iterate over the content of a
rectangular region, because generally the curve extends outside
the rectangle.

• A useful property of the Z curve is that the curve is constrained
between the bottom-left and top-right of the rectangle:

THINKING OUTSIDE THE BOX

• Visiting everything between MIN and MAX will visit everything in
the box

• But also potentially lots of other things.

• One option is simply to filter out those things when they are
encountered.

SOMETIMES THE CURVE DOESN'T WANDER FAR

HOW FAR OUTSIDE THE BOX?

IF YOUR BOX STRADDLES A LARGE POWER OF TWO IT WILL
GO TO THE MOON AND BACK

HOW FAR OUTSIDE THE BOX?

HOW FAR OUTSIDE THE BOX?

• Maybe the length of curve outside the box is (amortised) bounded
by some multiple of the size of the box, or something?

• No, sorry :-(

KEEPING IT IN THE BOX
• One option is to divide your box into 4 sub-ranges, splitting at the

multiples of the largest powers of two

KEEPING IT IN THE BOX

• This limits the visited space to four times the area of the box, if
the box is square.

KEEPING IT IN THE BOX

• But the area visited is less important than the number of items
visited, unless the items are uniformly distributed.

• Consider a cluster of items just outside a box which is itself almost
empty.

• Computational complexity is worst case O(N)

BIGMIN

• The alternative way to constrain the iteration to the box is the so-
called "BIGMIN" function.

• It dates from the original FORTRAN implementation when
identifiers of more than six characters were considered witchcraft.

• No-one understands how it works, but it does.

BIGMIN

BIGMIN

• Given a rectangle, and a point that's outside the rectangle but on
the rectangle's Z-curve, BIGMIN returns the next point on the Z-
curve that is on the boundary of the rectangle.

• So when iteration reaches an item that's outside the rectangle we
apply BIGMIN and then skip forward, bypassing any other items
on the same "loop".

• Skipping forward is probably O(log N).

BIGMIN

BEST CASE FOR BIGMIN
• Thinking about the "loops"

outside the box, BIGMIN works
best when there are:

• Short loops with no items
on them;

• Long loops with many items
that can all be skipped in
one go.

• This is what should happen with
a fractal curve like the Z-curve.
It's exactly what doesn't happen
with raster scan.

WORST CASE FOR BIGMIN

• The worst case is when there is just one item on each "loop".

• This is worse than just filtering out these items - it makes the
iteration O(N log N) rather than O(N)

LINEAR LOWER BOUND

• A variant of std::lower_bound that does a short linear search
before falling back to the logarithmic search.

• If you use it to iterate through the whole container,
complexity is better than O(N).

• Kludge needed to work with std::map's member
lower_bound.

A 2D CONTAINER ADAPTER

• Point and Rectangle classes.

• Two "magic" Z-curve functions, z_less and bigmin.

• linear_lower_bound.

• Type metafunction to change associative container's comparison
to z_less.

• adapt2d template.

• Iterator using boost::iterator_facade

CODE

http://chezphil.org/tmp/adapt2d.cc

http://chezphil.org/tmp/adapt2d.cc

CONCLUSIONS

• I've been using this technique for storing 2D data for about 10 years.

• I think its greatest strength is that you can apply it to many different
underlying containers. I've used:

• Read-only memory-mapped files.

• Flat maps (i.e. sorted vectors).

• Containers with special allocators.

• Performance is good in practice.

• But worst-case computational complexity is O(N).

REFERENCES

• Good starting point for space filling curves in general:

http://www.win.tue.nl/~hermanh/doku.php?
id=recursive_tilings_and_space-filling_curves

• An early paper describing how to use the Z-curve, including the
BIGMIN function:

Tropf, H.; Herzog, H. (1981), "Multidimensional Range Search
in Dynamically Balanced Trees", Angewandte Informatik 2: 71–
77.

• How to order points without actually interleaving the bits:

Chan, T. (2002), "Closest-point problems simplified on the
RAM", ACM-SIAM Symposium on Discrete Algorithms.

http://www.win.tue.nl/~hermanh/doku.php?id=recursive_tilings_and_space-filling_curves

