

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

ParaFormance:	 An	 Advanced	 Refactoring	 Tool	
for	 Parallelising C++	 Programs

Chris	 Brown
Craig	 Manson,	 Kenneth	 MacKenzie,	 Vladimir	 Janjic,	 Kevin	 Hammond
University	 of	 St	 Andrews,	 Scotland
@chrismarkbrown
@rephrase_eu
cmb21@st-‐andrews.ac.uk

C++ Meetup Edinburgh – November 2015

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

RePhrase Project:	 Refactoring	 Parallel	 Heterogeneous	 Software
– a	 Software	 Engineering	 Approach
(ICT-‐644235),	 	 2015-‐2018,	 €3.6M	 budget

8	 Partners,	 6	 European	 countries
UK,	 Spain,	 Italy,	 Austria,	 Hungary,	 Israel

0

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

The	 ParaFormance Project

• Seed	 Funding	 from	 Scottish	 Enterprise
• 1-‐3	 years	 pre-‐commercialisation funding
• Develop	 work	 from	 EU/UK	 publicly-‐funded	 projects

• Start	 Date
• 1st June	 2015

• Led	 by:	 Kevin	 Hammond	 and	 Chris	 Brown,	 University	 of	 St	
Andrews

3

The	 Dawn	 of	 a	 New	 Age

§ EZCHIP	 – TILE-‐MX100
§ 100	 64-‐bit	 AMD	 x86	 Cores
§ 3-‐level	 cache	 with	 >	 40	 Mbytes	 on-‐

chip	 cache
§ Multitude	 of	 network	 accelerators	
§ Over	 200Gbps	 integrated	 I/O	

including	 Ethernet,	
§ DDR	 supports	 up	 to	 1	 TB	 RAM

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

It’s	 not	 just	 about	 large	 systems

• Even	 mobile	 phones	 are	 multicore
§ Samsung	 Exynos 5	 Octa has	 8	 cores,	 4	 of	

which	 are	 “dark”

• Performance/energy	 tradeoffs	
mean	 systems	 will	 be	 increasingly	
parallel

• If	 we	 don’t	 solve	 the	 multicore	
challenge,	 then	 no	 other	 advances	
will	 matter!

5

ALL	 Future	 	
Programming	 will	 be	

Parallel!

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Programing	 Multicore	 Systems…

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Thinking	 in	 Parallel

§ Fundamentally,	 programmers	 must	 learn	 to	 “think	 parallel”
§ this	 requires	 new	 high-‐level programming	 constructs
§ you	 cannot	 program	 effectively	 while	 worrying	 about	 deadlocks	 etc.

§ they	 must	 be	 eliminated	 from	 the	 design!
§ you	 cannot	 program	 effectively	 while	 fiddling	 with	 communication	

etc.
§ this	 needs	 to	 be	 packaged/abstracted!

§ you	 cannot	 program	 effectively	 without	 performance	 information
§ this	 needs	 to	 be	 included!

§ We	 use	 two	 key	 technologies:
§ Refactoring	 (changing	 the	 source	 code	 structure)
§ Parallel	 Patterns	 (high-‐level	 functions	 of	 parallel	 algorithms)

7

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Parallel	 Patterns

8

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Our	 Approach

§ Start	 bottom-‐up
§ Identify	 components	 (side-‐effect	 free	 functions	 that	 correspond	 to	 parallel	

computations)	
§ using	 semi-‐automated	 refactoring

§ Think	 about	 the	 PATTERN of	 parallelism
§ e.g.	 map(reduce),	 task	 farm,	 parallel	 search,	 parallel	 completion,	 …

§ Structure	 the	 components	 into	 a	 parallel	 program
§ turn	 the	 patterns	 into	 concrete	 (skeleton)	 code
§ Take	 performance,	 energy etc.	 into	 account	 (multi-‐objective	 optimisation)
§ also	 using	 refactoring

§ Restructure	 if	 necessary!
§ also	 using	 refactoring

9

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

General	 Technique

ParaFormance
Tool

Original	 C/C++	 Source	 Code

Costing/
Profiling

Parallel
Pattern
Library

AMD
Opteron

IBM
Power

Intel
Core

ARM
Core

ATI
GPU

Intel
GPU

Nvidia
GPU

Nvidia
Tesla

Intel
Xeon	 Phi

Parallel	 C/C++	 Source	 Code

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Sequential	 Refactoring

Semi-‐automated	 (user-‐driven)
1. Renaming
2. Inlining
3. Changing	 scope
4. Adding	 arguments
5. GeneralisingDefinitions
6. Type	 Changes

Examples	 include	 refactoring	 Linux	 kernels	 using	 Cocinelle,	
refactoring	 Java/C++	 in	 Eclipse,	 etc.

11

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Refactoring	 =	 Condition	 +	 Transformation

Transformation

§ Ensure	 change	 at	 all	 points	
needed.

§ Ensure	 change	 at	 only	 those	
points	 needed.

12

Condition

§ Is	 the	 refactoring	 applicable?
§ Will	 it	 preserve	 the	 “semantics”	

of	 the	 program?
§ The	 module?	 The	 File?

Both	 pre-‐ and	 post-‐ conditions

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Refactoring	 can	 help	 parallel	 thinking!

§ can	 be	 used	 to	 introduce	
parallelism,	 and	 help	 choose	
the	 right	 abstraction

§ parallel	 programs	 can	 be	
refactored	 for	 new	 parallel	
architectures

§ can	 check	 the	 conditions	 for	
applying	 parallel	 skeletons

§ performance	 information	
can	 be	 integrated

§ Programmer	 ‘in	 the	 loop’

13

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

The	 ParaFormance Tool	 Prototype

§ Integrated	 into	 Eclipse	 (CDT)
§ Supports	 full	 C++(11)	 standard
§ Layout	 and	 comment	 preserving
§ Undoable
§ Preview	 feature

14

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Our	 Refactorings

§ Refactorings to	 Introduce:
§ Farm/Map,	 Parallel-‐For	 and	 Pipeline	 patterns
§ FastFlow

§ Components
§ Farm
§ Pipeline

§ TBB
§ Lambda
§ Function	 Class
§ Parallel	 For/Pipeline

§ OpenMP
§ Parallel-‐For

15

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

The	 ParaFormance Toolkit

1. Prediction/Estimation
§ Accurate	 and	 advance	 performance	 modelling

2. Discovery
§ Automatic	 discovery	 of	 (instances	 of)	 parallel	 patterns

3. Insertion
§ Automatically	 insert	 the	 parallel	 “Business	 Logic”

4. Elimination
§ Remove	 exisiting/legacy	 parallelism

5. Validity
§ Fundamental	 condition	 checks	

6. Profile
7. Shaping

16

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Image	 Convolution

17

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Image	 Convolution,	 Refactored

18

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

C++	 Refactoring	 Demo

19

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Image	 Convolution

20

0 1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Nr. threads

Sp
ee

du
p

Speedups for Image Convolution on titanic

0 1 2 4 6 8 10 12

1

4

8

12

Nr. threads

Speedups for Image Convolution on xookik

0 20 40 60 80 100 120 140 160

1

4

8

12

16

20

24

28

32

36

Nr. threads

Speedups for Image Convolution on power8

OpenMP (s | m)

OpenMP (m | m)
OpenMP m

TBB (s | m)

TBB (m | m)
TBB m

FF (s | m)

FF (m | m)
FF m

Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can

0 1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Nr. threads

Sp
ee

du
p

Speedups for Image Convolution on titanic

0 1 2 4 6 8 10 12

1

4

8

12

Nr. threads

Speedups for Image Convolution on xookik

0 20 40 60 80 100 120 140 160

1

4

8

12

16

20

24

28

32

36

Nr. threads

Speedups for Image Convolution on power8

OpenMP (s | m)

OpenMP (m | m)
OpenMP m

TBB (s | m)

TBB (m | m)
TBB m

FF (s | m)

FF (m | m)
FF m

Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Image	 Convolution

21

0 1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Nr. threads

Sp
ee

du
p

Speedups for Image Convolution on titanic

0 1 2 4 6 8 10 12

1

4

8

12

Nr. threads

Speedups for Image Convolution on xookik

0 20 40 60 80 100 120 140 160

1

4

8

12

16

20

24

28

32

36

Nr. threads

Speedups for Image Convolution on power8

OpenMP (s | m)

OpenMP (m | m)
OpenMP m

TBB (s | m)

TBB (m | m)
TBB m

FF (s | m)

FF (m | m)
FF m

Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can

0 1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Nr. threads

Sp
ee

du
p

Speedups for Image Convolution on titanic

0 1 2 4 6 8 10 12

1

4

8

12

Nr. threads

Speedups for Image Convolution on xookik

0 20 40 60 80 100 120 140 160

1

4

8

12

16

20

24

28

32

36

Nr. threads

Speedups for Image Convolution on power8

OpenMP (s | m)

OpenMP (m | m)
OpenMP m

TBB (s | m)

TBB (m | m)
TBB m

FF (s | m)

FF (m | m)
FF m

Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Image	 Convolution	 – 20	 Cores!

22

0 1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Nr. threads

Sp
ee

du
p

Speedups for Image Convolution on titanic

0 1 2 4 6 8 10 12

1

4

8

12

Nr. threads

Speedups for Image Convolution on xookik

0 20 40 60 80 100 120 140 160

1

4

8

12

16

20

24

28

32

36

Nr. threads

Speedups for Image Convolution on power8

OpenMP (s | m)

OpenMP (m | m)
OpenMP m

TBB (s | m)

TBB (m | m)
TBB m

FF (s | m)

FF (m | m)
FF m

Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can

0 1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Nr. threads

Sp
ee

du
p

Speedups for Image Convolution on titanic

0 1 2 4 6 8 10 12

1

4

8

12

Nr. threads

Speedups for Image Convolution on xookik

0 20 40 60 80 100 120 140 160

1

4

8

12

16

20

24

28

32

36

Nr. threads

Speedups for Image Convolution on power8

OpenMP (s | m)

OpenMP (m | m)
OpenMP m

TBB (s | m)

TBB (m | m)
TBB m

FF (s | m)

FF (m | m)
FF m

Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Comparable	 Performance

23

1 2 4 6 8 10 12 14 16

1

2

4

6

8

10

No of �2 workers

Sp
ee

du
p

Speedups for Convolution �1(G) k �2(F)

�1 = 1

�1 = 2

�1 = 4

�1 = 6

�1 = 8

�1 = 10

1 2 4 6 8 10 12 14 16 18 20 22 24

1

2

4

6

8

10

12

14

16

18

20

22

24

No of Workers

Sp
ee

du
p

Speedups for Ant Colony, BasicN2 and Graphical Lasso

BasicN2

BasicN2 Manual

Graphical Lasso

Graphical Lasso Manual

Ant Colony Optimisation Manual

Ant Colony Optimisation

Figure 3. Refactored Use Case Results in FastFlow

code and simply points the refactoring tool towards them. The
actual parallelisation is then performed by the refactoring tool,
supervised by the programmer. This can give significant sav-
ings in effort, of about one order of magnitude. This is achieved
without major performance losses: as desired, the speedups
achieved with the refactoring tool are approximately the same
as for full-scale manual implementations by an expert. In
future we expect to develop this work in a number of new
directions, including adding advanced performance models to
the refactoring process, thus allowing the user to accurately
predict the parallel performance from applying a particular
refactoring with a specified number of threads. This may be
particularly useful when porting the applications to different
architectures, including adding refactoring support for GPU
programming in OpenCl. Also, once sufficient automisation
of the refactoring tool is achieved, the best parametrisation
regarding parallel efficiency can be determined via optimisa-
tion, further facilitating this approach. In addition, we also
plan to implement more skeletons, particularly in the field of
computer alegbra and physics, and demonstrate the refactoring
approach with these new skeletons on a wide range of realistic
applications. This will add to the evidence that our approach is
general, usable and scalable. Finally, we intend to investigate
the limits of scalability that we have obvserved for some of our
use-cases, aiming to determine whether the limits are hardware
artefacts or algorithmic.

REFERENCES

[1] M. Aldinucci, M. Danelutto, P. Kilpatrick and M. Torquati. FastFlow:
High-Level and Efficient Streaming on Multi-Core. Programming
Multi-core and Many-core Computing Systems. Parallel and Distributed
Comptuing. Chap. 13, 2013. Wiley.

[2] Michael P Allen. Introduction to Molecular Dynamics Simulation.
Computational Soft Matter: From Synthetic Polymers to Proteins, 23:1–
28, 2004.

[3] M. den Besten, T. Stuetzle, M. Dorigo. Ant Colony Optimization for
the Total Weighted Tardiness Problem PPSN 6, p611-620, Sept. 2000.

[4] C. Brown, K. Hammond, M. Danelutto, P. Kilpatrick, and A. Elliott.
Cost-Directed Refactoring for Parallel Erlang Programs. in Interna-
tional Journal Parallel Processing. HLPP 2013 Special Issue. Springer.
Paris, September 2013. DOI 10.1007/s10766-013-0266-5

[5] C. Brown, K. Hammond, M. Danelutto, and P. Kilpatrick. A Language-
Independent Parallel Refactoring Framework. in Proc. of the Fifth
Workshop on Refactoring Tools (WRT ’12)., Pages 54-58. ACM, New
York, USA. 2012.

[6] C. Brown, H. Li, and S. Thompson. An Expression Processor: A Case
Study in Refactoring Haskell Programs. Eleventh Symp. on Trends in
Func. Prog., May 2010.

[7] C. Brown, H. Loidl, and K. Hammond. Paraforming: Forming Haskell
Programs using Novel Refactoring Techniques. 12th Symp. on Trends
in Func. Prog., Spain, May 2011.

[8] C. Brown, K. Hammond, M. Danelutto, P. Kilpatrick, H. Schöner,
and T. Breddin. Paraphrasing: Generating Parallel Programs Using
Refactoring. In 10th International Symposium, FMCO 2011. Turin,
Italy, October 3-5, 2011. Revised Selected Papers. Springer-Berlin-
Heidelberg. Pages 237-256.

[9] R. M. Burstall and J. Darlington. A Transformation System for
Developing Recursive Programs. J. of the ACM, 24(1):44–67, 1977.

[10] M. Cole. Algorithmic Skeletons: Structured Management of Parallel
Computations. Research Monographs in Par. and Distrib. Computing.
Pitman, 1989.

[11] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto
for Skeletal Parallel Programming. Par. Computing, 30(3):389–406,
2004.

[12] D. Dig. A Refactoring Approach to Parallelism. IEEE Softw., 28:17–22,
January 2011.

[13] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse In-
verse Covariance Estimation with the Graphical Lasso. Biostatistics,
9(3):432–441, July 2008.

[14] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marí. Parallel Func. Prog.
in Eden. J. of Func. Prog., 15(3):431–475, 2005.

[15] T. Mens and T. Tourwé. A Survey of Software Refactoring. IEEE
Trans. Softw. Eng., 30(2):126–139, 2004.

[16] H. Partsch and R. Steinbruggen. Program Transformation Systems.
ACM Comput. Surv., 15(3):199–236, 1983.

[17] K. Hammond, M. Aldinucci, C. Brown, F. Cesarini, M. Danelutto,
H. Gonzalez-Velez, P. Kilpatrick, R. Keller, T. Natschlager, and
G. Shainer. The ParaPhrase Project: Parallel Patterns for Adaptive
Heterogeneous Multicore Systems. FMCO. Feb. 2012.

[18] K. Hammond, J. Berthold, and R. Loogen. Automatic Skeletons
in Template Haskell. Parallel Processing Letters, 13(3):413–424,
September 2003.

[19] W. Opdyke. Refactoring Object-Oriented Frameworks. PhD Thesis,
Dept. of Comp Sci, University of Illinois at Urbana-Champaign, Cham-
paign, IL, USA (1992).

[20] T. Sheard and S. P. Jones. Template Meta-Programming for Haskell.
SIGPLAN Not., 37:60–75, December 2002.

[21] D. B. Skillicorn and W. Cai. A Cost Calculus for Parallel Functional
Programming. J. Parallel Distrib. Comput., 28(1):65–83, 1995.

[22] J. Wloka, M. Sridharan, and F. Tip. Refactoring for reentrancy. In
ESEC/FSE ’09, pages 173–182, Amsterdam, 2009. ACM.

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Conclusions

§ Refactoring	 tool	 support:
§ Guides	 a	 programmer	 through	 steps	 to	 achieve	 parallelism
§ Warns	 the	 user	 if	 they	 are	 going	 wrong
§ Avoids	 common	 pitfalls
§ Helps	 with	 understanding and	 intuition
§ Reduces	 amount	 of	 boilerplate	 code

§ Allows	 programmer	 to	 concentrate	 on	 algorithm,	 rather	
than	 parallelism.

24

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

ParaFormance/Rephrase	 Needs	 You!

• Please	 join	 our	 mailing	 list
and	 help	 grow	 our	 user	 community
§ news	 items
§ access	 to	 free	 development	 software
§ chat	 to	 the	 developers
§ free	 developer	 workshops
§ bug	 tracking	 and	 fixing
§ Tools	 for	 both	 Erlang and	 C++

• Subscribe	 at

• We’re	 also	 looking	 for	 open	 source
developers...

25

https://mailman.cs.st-‐
andrews.ac.uk/mailman/listinfo/rephrase-‐
news

THANK	 YOU!

http://rephrase-ict.eu

@rephrase_eu

26

