

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

ParaFormance:	
 An	
 Advanced	
 Refactoring	
 Tool	

for	
 Parallelising C++	
 Programs

Chris	
 Brown
Craig	
 Manson,	
 Kenneth	
 MacKenzie,	
 Vladimir	
 Janjic,	
 Kevin	
 Hammond
University	
 of	
 St	
 Andrews,	
 Scotland
@chrismarkbrown
@rephrase_eu
cmb21@st-­‐andrews.ac.uk

C++ Meetup Edinburgh – November 2015

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

RePhrase Project:	
 Refactoring	
 Parallel	
 Heterogeneous	
 Software
– a	
 Software	
 Engineering	
 Approach
(ICT-­‐644235),	
 	
 2015-­‐2018,	
 €3.6M	
 budget

8	
 Partners,	
 6	
 European	
 countries
UK,	
 Spain,	
 Italy,	
 Austria,	
 Hungary,	
 Israel

0

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

The	
 ParaFormance Project

• Seed	
 Funding	
 from	
 Scottish	
 Enterprise
• 1-­‐3	
 years	
 pre-­‐commercialisation funding
• Develop	
 work	
 from	
 EU/UK	
 publicly-­‐funded	
 projects

• Start	
 Date
• 1st June	
 2015

• Led	
 by:	
 Kevin	
 Hammond	
 and	
 Chris	
 Brown,	
 University	
 of	
 St	

Andrews

3

The	
 Dawn	
 of	
 a	
 New	
 Age

§ EZCHIP	
 – TILE-­‐MX100
§ 100	
 64-­‐bit	
 AMD	
 x86	
 Cores
§ 3-­‐level	
 cache	
 with	
 >	
 40	
 Mbytes	
 on-­‐

chip	
 cache
§ Multitude	
 of	
 network	
 accelerators	

§ Over	
 200Gbps	
 integrated	
 I/O	

including	
 Ethernet,	

§ DDR	
 supports	
 up	
 to	
 1	
 TB	
 RAM

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

It’s	
 not	
 just	
 about	
 large	
 systems

• Even	
 mobile	
 phones	
 are	
 multicore
§ Samsung	
 Exynos 5	
 Octa has	
 8	
 cores,	
 4	
 of	

which	
 are	
 “dark”

• Performance/energy	
 tradeoffs	

mean	
 systems	
 will	
 be	
 increasingly	

parallel

• If	
 we	
 don’t	
 solve	
 the	
 multicore	

challenge,	
 then	
 no	
 other	
 advances	

will	
 matter!

5

ALL	
 Future	
 	

Programming	
 will	
 be	

Parallel!

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Programing	
 Multicore	
 Systems…

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Thinking	
 in	
 Parallel

§ Fundamentally,	
 programmers	
 must	
 learn	
 to	
 “think	
 parallel”
§ this	
 requires	
 new	
 high-­‐level programming	
 constructs
§ you	
 cannot	
 program	
 effectively	
 while	
 worrying	
 about	
 deadlocks	
 etc.

§ they	
 must	
 be	
 eliminated	
 from	
 the	
 design!
§ you	
 cannot	
 program	
 effectively	
 while	
 fiddling	
 with	
 communication	

etc.
§ this	
 needs	
 to	
 be	
 packaged/abstracted!

§ you	
 cannot	
 program	
 effectively	
 without	
 performance	
 information
§ this	
 needs	
 to	
 be	
 included!

§ We	
 use	
 two	
 key	
 technologies:
§ Refactoring	
 (changing	
 the	
 source	
 code	
 structure)
§ Parallel	
 Patterns	
 (high-­‐level	
 functions	
 of	
 parallel	
 algorithms)

7

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Parallel	
 Patterns

8

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Our	
 Approach

§ Start	
 bottom-­‐up
§ Identify	
 components	
 (side-­‐effect	
 free	
 functions	
 that	
 correspond	
 to	
 parallel	

computations)	

§ using	
 semi-­‐automated	
 refactoring

§ Think	
 about	
 the	
 PATTERN of	
 parallelism
§ e.g.	
 map(reduce),	
 task	
 farm,	
 parallel	
 search,	
 parallel	
 completion,	
 …

§ Structure	
 the	
 components	
 into	
 a	
 parallel	
 program
§ turn	
 the	
 patterns	
 into	
 concrete	
 (skeleton)	
 code
§ Take	
 performance,	
 energy etc.	
 into	
 account	
 (multi-­‐objective	
 optimisation)
§ also	
 using	
 refactoring

§ Restructure	
 if	
 necessary!
§ also	
 using	
 refactoring

9

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

General	
 Technique

ParaFormance
Tool

Original	
 C/C++	
 Source	
 Code

Costing/
Profiling

Parallel
Pattern
Library

AMD
Opteron

IBM
Power

Intel
Core

ARM
Core

ATI
GPU

Intel
GPU

Nvidia
GPU

Nvidia
Tesla

Intel
Xeon	
 Phi

Parallel	
 C/C++	
 Source	
 Code

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Sequential	
 Refactoring

Semi-­‐automated	
 (user-­‐driven)
1. Renaming
2. Inlining
3. Changing	
 scope
4. Adding	
 arguments
5. GeneralisingDefinitions
6. Type	
 Changes

Examples	
 include	
 refactoring	
 Linux	
 kernels	
 using	
 Cocinelle,	

refactoring	
 Java/C++	
 in	
 Eclipse,	
 etc.

11

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Refactoring	
 =	
 Condition	
 +	
 Transformation

Transformation

§ Ensure	
 change	
 at	
 all	
 points	

needed.

§ Ensure	
 change	
 at	
 only	
 those	

points	
 needed.

12

Condition

§ Is	
 the	
 refactoring	
 applicable?
§ Will	
 it	
 preserve	
 the	
 “semantics”	

of	
 the	
 program?
§ The	
 module?	
 The	
 File?

Both	
 pre-­‐ and	
 post-­‐ conditions

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Refactoring	
 can	
 help	
 parallel	
 thinking!

§ can	
 be	
 used	
 to	
 introduce	

parallelism,	
 and	
 help	
 choose	

the	
 right	
 abstraction

§ parallel	
 programs	
 can	
 be	

refactored	
 for	
 new	
 parallel	

architectures

§ can	
 check	
 the	
 conditions	
 for	

applying	
 parallel	
 skeletons

§ performance	
 information	

can	
 be	
 integrated

§ Programmer	
 ‘in	
 the	
 loop’

13

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

The	
 ParaFormance Tool	
 Prototype

§ Integrated	
 into	
 Eclipse	
 (CDT)
§ Supports	
 full	
 C++(11)	
 standard
§ Layout	
 and	
 comment	
 preserving
§ Undoable
§ Preview	
 feature

14

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Our	
 Refactorings

§ Refactorings to	
 Introduce:
§ Farm/Map,	
 Parallel-­‐For	
 and	
 Pipeline	
 patterns
§ FastFlow

§ Components
§ Farm
§ Pipeline

§ TBB
§ Lambda
§ Function	
 Class
§ Parallel	
 For/Pipeline

§ OpenMP
§ Parallel-­‐For

15

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

The	
 ParaFormance Toolkit

1. Prediction/Estimation
§ Accurate	
 and	
 advance	
 performance	
 modelling

2. Discovery
§ Automatic	
 discovery	
 of	
 (instances	
 of)	
 parallel	
 patterns

3. Insertion
§ Automatically	
 insert	
 the	
 parallel	
 “Business	
 Logic”

4. Elimination
§ Remove	
 exisiting/legacy	
 parallelism

5. Validity
§ Fundamental	
 condition	
 checks	

6. Profile
7. Shaping

16

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Image	
 Convolution

17

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Image	
 Convolution,	
 Refactored

18

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

C++	
 Refactoring	
 Demo

19

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Image	
 Convolution

20

0 1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Nr. threads

Sp
ee

du
p

Speedups for Image Convolution on titanic

0 1 2 4 6 8 10 12

1

4

8

12

Nr. threads

Speedups for Image Convolution on xookik

0 20 40 60 80 100 120 140 160

1

4

8

12

16

20

24

28

32

36

Nr. threads

Speedups for Image Convolution on power8

OpenMP (s | m)

OpenMP (m | m)
OpenMP m

TBB (s | m)

TBB (m | m)
TBB m

FF (s | m)

FF (m | m)
FF m

Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can

0 1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Nr. threads

Sp
ee

du
p

Speedups for Image Convolution on titanic

0 1 2 4 6 8 10 12

1

4

8

12

Nr. threads

Speedups for Image Convolution on xookik

0 20 40 60 80 100 120 140 160

1

4

8

12

16

20

24

28

32

36

Nr. threads

Speedups for Image Convolution on power8

OpenMP (s | m)

OpenMP (m | m)
OpenMP m

TBB (s | m)

TBB (m | m)
TBB m

FF (s | m)

FF (m | m)
FF m

Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Image	
 Convolution

21

0 1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Nr. threads

Sp
ee

du
p

Speedups for Image Convolution on titanic

0 1 2 4 6 8 10 12

1

4

8

12

Nr. threads

Speedups for Image Convolution on xookik

0 20 40 60 80 100 120 140 160

1

4

8

12

16

20

24

28

32

36

Nr. threads

Speedups for Image Convolution on power8

OpenMP (s | m)

OpenMP (m | m)
OpenMP m

TBB (s | m)

TBB (m | m)
TBB m

FF (s | m)

FF (m | m)
FF m

Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can

0 1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Nr. threads

Sp
ee

du
p

Speedups for Image Convolution on titanic

0 1 2 4 6 8 10 12

1

4

8

12

Nr. threads

Speedups for Image Convolution on xookik

0 20 40 60 80 100 120 140 160

1

4

8

12

16

20

24

28

32

36

Nr. threads

Speedups for Image Convolution on power8

OpenMP (s | m)

OpenMP (m | m)
OpenMP m

TBB (s | m)

TBB (m | m)
TBB m

FF (s | m)

FF (m | m)
FF m

Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Image	
 Convolution	
 – 20	
 Cores!

22

0 1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Nr. threads

Sp
ee

du
p

Speedups for Image Convolution on titanic

0 1 2 4 6 8 10 12

1

4

8

12

Nr. threads

Speedups for Image Convolution on xookik

0 20 40 60 80 100 120 140 160

1

4

8

12

16

20

24

28

32

36

Nr. threads

Speedups for Image Convolution on power8

OpenMP (s | m)

OpenMP (m | m)
OpenMP m

TBB (s | m)

TBB (m | m)
TBB m

FF (s | m)

FF (m | m)
FF m

Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can

0 1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Nr. threads

Sp
ee

du
p

Speedups for Image Convolution on titanic

0 1 2 4 6 8 10 12

1

4

8

12

Nr. threads

Speedups for Image Convolution on xookik

0 20 40 60 80 100 120 140 160

1

4

8

12

16

20

24

28

32

36

Nr. threads

Speedups for Image Convolution on power8

OpenMP (s | m)

OpenMP (m | m)
OpenMP m

TBB (s | m)

TBB (m | m)
TBB m

FF (s | m)

FF (m | m)
FF m

Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Comparable	
 Performance

23

1 2 4 6 8 10 12 14 16

1

2

4

6

8

10

No of �2 workers

Sp
ee

du
p

Speedups for Convolution �1(G) k �2(F)

�1 = 1

�1 = 2

�1 = 4

�1 = 6

�1 = 8

�1 = 10

1 2 4 6 8 10 12 14 16 18 20 22 24

1

2

4

6

8

10

12

14

16

18

20

22

24

No of Workers

Sp
ee

du
p

Speedups for Ant Colony, BasicN2 and Graphical Lasso

BasicN2

BasicN2 Manual

Graphical Lasso

Graphical Lasso Manual

Ant Colony Optimisation Manual

Ant Colony Optimisation

Figure 3. Refactored Use Case Results in FastFlow

code and simply points the refactoring tool towards them. The
actual parallelisation is then performed by the refactoring tool,
supervised by the programmer. This can give significant sav-
ings in effort, of about one order of magnitude. This is achieved
without major performance losses: as desired, the speedups
achieved with the refactoring tool are approximately the same
as for full-scale manual implementations by an expert. In
future we expect to develop this work in a number of new
directions, including adding advanced performance models to
the refactoring process, thus allowing the user to accurately
predict the parallel performance from applying a particular
refactoring with a specified number of threads. This may be
particularly useful when porting the applications to different
architectures, including adding refactoring support for GPU
programming in OpenCl. Also, once sufficient automisation
of the refactoring tool is achieved, the best parametrisation
regarding parallel efficiency can be determined via optimisa-
tion, further facilitating this approach. In addition, we also
plan to implement more skeletons, particularly in the field of
computer alegbra and physics, and demonstrate the refactoring
approach with these new skeletons on a wide range of realistic
applications. This will add to the evidence that our approach is
general, usable and scalable. Finally, we intend to investigate
the limits of scalability that we have obvserved for some of our
use-cases, aiming to determine whether the limits are hardware
artefacts or algorithmic.

REFERENCES

[1] M. Aldinucci, M. Danelutto, P. Kilpatrick and M. Torquati. FastFlow:
High-Level and Efficient Streaming on Multi-Core. Programming
Multi-core and Many-core Computing Systems. Parallel and Distributed
Comptuing. Chap. 13, 2013. Wiley.

[2] Michael P Allen. Introduction to Molecular Dynamics Simulation.
Computational Soft Matter: From Synthetic Polymers to Proteins, 23:1–
28, 2004.

[3] M. den Besten, T. Stuetzle, M. Dorigo. Ant Colony Optimization for
the Total Weighted Tardiness Problem PPSN 6, p611-620, Sept. 2000.

[4] C. Brown, K. Hammond, M. Danelutto, P. Kilpatrick, and A. Elliott.
Cost-Directed Refactoring for Parallel Erlang Programs. in Interna-
tional Journal Parallel Processing. HLPP 2013 Special Issue. Springer.
Paris, September 2013. DOI 10.1007/s10766-013-0266-5

[5] C. Brown, K. Hammond, M. Danelutto, and P. Kilpatrick. A Language-
Independent Parallel Refactoring Framework. in Proc. of the Fifth
Workshop on Refactoring Tools (WRT ’12)., Pages 54-58. ACM, New
York, USA. 2012.

[6] C. Brown, H. Li, and S. Thompson. An Expression Processor: A Case
Study in Refactoring Haskell Programs. Eleventh Symp. on Trends in
Func. Prog., May 2010.

[7] C. Brown, H. Loidl, and K. Hammond. Paraforming: Forming Haskell
Programs using Novel Refactoring Techniques. 12th Symp. on Trends
in Func. Prog., Spain, May 2011.

[8] C. Brown, K. Hammond, M. Danelutto, P. Kilpatrick, H. Schöner,
and T. Breddin. Paraphrasing: Generating Parallel Programs Using
Refactoring. In 10th International Symposium, FMCO 2011. Turin,
Italy, October 3-5, 2011. Revised Selected Papers. Springer-Berlin-
Heidelberg. Pages 237-256.

[9] R. M. Burstall and J. Darlington. A Transformation System for
Developing Recursive Programs. J. of the ACM, 24(1):44–67, 1977.

[10] M. Cole. Algorithmic Skeletons: Structured Management of Parallel
Computations. Research Monographs in Par. and Distrib. Computing.
Pitman, 1989.

[11] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto
for Skeletal Parallel Programming. Par. Computing, 30(3):389–406,
2004.

[12] D. Dig. A Refactoring Approach to Parallelism. IEEE Softw., 28:17–22,
January 2011.

[13] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse In-
verse Covariance Estimation with the Graphical Lasso. Biostatistics,
9(3):432–441, July 2008.

[14] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marí. Parallel Func. Prog.
in Eden. J. of Func. Prog., 15(3):431–475, 2005.

[15] T. Mens and T. Tourwé. A Survey of Software Refactoring. IEEE
Trans. Softw. Eng., 30(2):126–139, 2004.

[16] H. Partsch and R. Steinbruggen. Program Transformation Systems.
ACM Comput. Surv., 15(3):199–236, 1983.

[17] K. Hammond, M. Aldinucci, C. Brown, F. Cesarini, M. Danelutto,
H. Gonzalez-Velez, P. Kilpatrick, R. Keller, T. Natschlager, and
G. Shainer. The ParaPhrase Project: Parallel Patterns for Adaptive
Heterogeneous Multicore Systems. FMCO. Feb. 2012.

[18] K. Hammond, J. Berthold, and R. Loogen. Automatic Skeletons
in Template Haskell. Parallel Processing Letters, 13(3):413–424,
September 2003.

[19] W. Opdyke. Refactoring Object-Oriented Frameworks. PhD Thesis,
Dept. of Comp Sci, University of Illinois at Urbana-Champaign, Cham-
paign, IL, USA (1992).

[20] T. Sheard and S. P. Jones. Template Meta-Programming for Haskell.
SIGPLAN Not., 37:60–75, December 2002.

[21] D. B. Skillicorn and W. Cai. A Cost Calculus for Parallel Functional
Programming. J. Parallel Distrib. Comput., 28(1):65–83, 1995.

[22] J. Wloka, M. Sridharan, and F. Tip. Refactoring for reentrancy. In
ESEC/FSE ’09, pages 173–182, Amsterdam, 2009. ACM.

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

Conclusions

§ Refactoring	
 tool	
 support:
§ Guides	
 a	
 programmer	
 through	
 steps	
 to	
 achieve	
 parallelism
§ Warns	
 the	
 user	
 if	
 they	
 are	
 going	
 wrong
§ Avoids	
 common	
 pitfalls
§ Helps	
 with	
 understanding and	
 intuition
§ Reduces	
 amount	
 of	
 boilerplate	
 code

§ Allows	
 programmer	
 to	
 concentrate	
 on	
 algorithm,	
 rather	

than	
 parallelism.

24

•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations

“Rephrase”	is	a	European	Union	Horizon	2020	funded	research	and	innovation	project
“Paraphrasing”	is	a	“high-growth”	spinout	project	(HGSP)	funded	by	Scottish	Enterprise
“ParaFormance”	is	a	Trade	Mark	of	the	University	of	St	Andrews

Project: ParaFormanceTM

Technologies
Advanced Tools for Supporting

Multicore Software Development

ParaFormance

PMG Agenda 30/10/2015

1. Welcome

2. Actions from last meeting (that aren’t covered later)

3. Mentor update

4. Start Global

5. Technical update

6. Commercial update

7. Financial update

8. Date of next 2 meetings

9. AOB

10. Summarize actions arising

ParaFormance/Rephrase	
 Needs	
 You!

• Please	
 join	
 our	
 mailing	
 list
and	
 help	
 grow	
 our	
 user	
 community
§ news	
 items
§ access	
 to	
 free	
 development	
 software
§ chat	
 to	
 the	
 developers
§ free	
 developer	
 workshops
§ bug	
 tracking	
 and	
 fixing
§ Tools	
 for	
 both	
 Erlang and	
 C++

• Subscribe	
 at

• We’re	
 also	
 looking	
 for	
 open	
 source
developers...

25

https://mailman.cs.st-­‐
andrews.ac.uk/mailman/listinfo/rephrase-­‐
news

THANK	
 YOU!

http://rephrase-ict.eu

@rephrase_eu

26

