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  Refactoring	
  Parallel	
  Heterogeneous	
  Software
– a	
  Software	
  Engineering	
  Approach
(ICT-­‐644235),	
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  €3.6M	
  budget

8	
  Partners,	
  6	
  European	
  countries
UK,	
  Spain,	
  Italy,	
  Austria,	
  Hungary,	
  Israel
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The	
  ParaFormance Project

• Seed	
  Funding	
  from	
  Scottish	
  Enterprise
• 1-­‐3	
  years	
  pre-­‐commercialisation funding
• Develop	
  work	
  from	
  EU/UK	
  publicly-­‐funded	
  projects

• Start	
  Date
• 1st June	
  2015

• Led	
  by:	
  Kevin	
  Hammond	
  and	
  Chris	
  Brown,	
  University	
  of	
  St	
  
Andrews
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The	
  Dawn	
  of	
  a	
  New	
  Age

§ EZCHIP	
  – TILE-­‐MX100
§ 100	
  64-­‐bit	
  AMD	
  x86	
  Cores
§ 3-­‐level	
  cache	
  with	
  >	
  40	
  Mbytes	
  on-­‐

chip	
  cache
§ Multitude	
  of	
  network	
  accelerators	
  
§ Over	
  200Gbps	
  integrated	
  I/O	
  

including	
  Ethernet,	
  
§ DDR	
  supports	
  up	
  to	
  1	
  TB	
  RAM
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It’s	
  not	
  just	
  about	
  large	
  systems

• Even	
  mobile	
  phones	
  are	
  multicore
§ Samsung	
  Exynos 5	
  Octa has	
  8	
  cores,	
  4	
  of	
  

which	
  are	
  “dark”

• Performance/energy	
  tradeoffs	
  
mean	
  systems	
  will	
  be	
  increasingly	
  
parallel

• If	
  we	
  don’t	
  solve	
  the	
  multicore	
  
challenge,	
  then	
  no	
  other	
  advances	
  
will	
  matter!
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  Future	
  	
  
Programming	
  will	
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Parallel!
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Programing	
  Multicore	
  Systems…
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Thinking	
  in	
  Parallel

§ Fundamentally,	
  programmers	
  must	
  learn	
  to	
  “think	
  parallel”
§ this	
  requires	
  new	
  high-­‐level programming	
  constructs
§ you	
  cannot	
  program	
  effectively	
  while	
  worrying	
  about	
  deadlocks	
  etc.

§ they	
  must	
  be	
  eliminated	
  from	
  the	
  design!
§ you	
  cannot	
  program	
  effectively	
  while	
  fiddling	
  with	
  communication	
  

etc.
§ this	
  needs	
  to	
  be	
  packaged/abstracted!

§ you	
  cannot	
  program	
  effectively	
  without	
  performance	
  information
§ this	
  needs	
  to	
  be	
  included!

§ We	
  use	
  two	
  key	
  technologies:
§ Refactoring	
  (changing	
  the	
  source	
  code	
  structure)
§ Parallel	
  Patterns	
  (high-­‐level	
  functions	
  of	
  parallel	
  algorithms)
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Parallel	
  Patterns
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Our	
  Approach

§ Start	
  bottom-­‐up
§ Identify	
  components	
  (side-­‐effect	
  free	
  functions	
  that	
  correspond	
  to	
  parallel	
  

computations)	
  
§ using	
  semi-­‐automated	
  refactoring

§ Think	
  about	
  the	
  PATTERN of	
  parallelism
§ e.g.	
  map(reduce),	
  task	
  farm,	
  parallel	
  search,	
  parallel	
  completion,	
  …

§ Structure	
  the	
  components	
  into	
  a	
  parallel	
  program
§ turn	
  the	
  patterns	
  into	
  concrete	
  (skeleton)	
  code
§ Take	
  performance,	
  energy etc.	
  into	
  account	
  (multi-­‐objective	
  optimisation)
§ also	
  using	
  refactoring

§ Restructure	
  if	
  necessary!
§ also	
  using	
  refactoring
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ParaFormance
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  C/C++	
  Source	
  Code

Costing/
Profiling

Parallel
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Library
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IBM
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Core

ARM
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GPU

Intel
GPU

Nvidia
GPU

Nvidia
Tesla

Intel
Xeon	
  Phi
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  C/C++	
  Source	
  Code
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Sequential	
  Refactoring

Semi-­‐automated	
  (user-­‐driven)
1. Renaming
2. Inlining
3. Changing	
  scope
4. Adding	
  arguments
5. GeneralisingDefinitions
6. Type	
  Changes

Examples	
  include	
  refactoring	
  Linux	
  kernels	
  using	
  Cocinelle,	
  
refactoring	
  Java/C++	
  in	
  Eclipse,	
  etc.
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Refactoring	
  =	
  Condition	
  +	
  Transformation

Transformation

§ Ensure	
  change	
  at	
  all	
  points	
  
needed.

§ Ensure	
  change	
  at	
  only	
  those	
  
points	
  needed.

12

Condition

§ Is	
  the	
  refactoring	
  applicable?
§ Will	
  it	
  preserve	
  the	
  “semantics”	
  

of	
  the	
  program?
§ The	
  module?	
  The	
  File?

Both	
  pre-­‐ and	
  post-­‐ conditions
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Refactoring	
  can	
  help	
  parallel	
  thinking!

§ can	
  be	
  used	
  to	
  introduce	
  
parallelism,	
  and	
  help	
  choose	
  
the	
  right	
  abstraction

§ parallel	
  programs	
  can	
  be	
  
refactored	
  for	
  new	
  parallel	
  
architectures

§ can	
  check	
  the	
  conditions	
  for	
  
applying	
  parallel	
  skeletons

§ performance	
  information	
  
can	
  be	
  integrated

§ Programmer	
  ‘in	
  the	
  loop’

13
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The	
  ParaFormance Tool	
  Prototype

§ Integrated	
  into	
  Eclipse	
  (CDT)
§ Supports	
  full	
  C++(11)	
  standard
§ Layout	
  and	
  comment	
  preserving
§ Undoable
§ Preview	
  feature

14
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Our	
  Refactorings

§ Refactorings to	
  Introduce:
§ Farm/Map,	
  Parallel-­‐For	
  and	
  Pipeline	
  patterns
§ FastFlow

§ Components
§ Farm
§ Pipeline

§ TBB
§ Lambda
§ Function	
  Class
§ Parallel	
  For/Pipeline

§ OpenMP
§ Parallel-­‐For

15
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The	
  ParaFormance Toolkit

1. Prediction/Estimation
§ Accurate	
  and	
  advance	
  performance	
  modelling

2. Discovery
§ Automatic	
  discovery	
  of	
  (instances	
  of)	
  parallel	
  patterns

3. Insertion
§ Automatically	
  insert	
  the	
  parallel	
  “Business	
  Logic”

4. Elimination
§ Remove	
  exisiting/legacy	
  parallelism

5. Validity
§ Fundamental	
  condition	
  checks	
  

6. Profile
7. Shaping

16
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Image	
  Convolution
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Image	
  Convolution,	
  Refactored
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C++	
  Refactoring	
  Demo
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Image	
  Convolution
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Fig. 10. Image Convolution speedups on titanic, xookik and power. Here, | is a parallel pipeline, m is a parallel map and s is a sequential stage.

1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i ] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i ] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can
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1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i ] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i ] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can
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1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i ] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i ] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can
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1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i ] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i ] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can
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1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i ] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i ] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can
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1 for (j=0; j<num iter; j++) {
2 for (i=0; i<num ants; i++)
3 cost[i ] = solve (i, p,d,w,t);
4 best t = pick best(&best result);
5 for (i=0; i<n; i++)
6 t [i ] = update(i, best t, best result);
7 }

Since pick best in Line 4 cannot start until all of the ants have
computed their solutions, and the for loop that updates t cannot
start until pick best finishes, we have implicit ordering in the
code above. Therefore, the structure can be described in the
RPL with:

seq (solve) ; pick best ; seq (update)

where ; denotes the ordering between computations. Due to an
ordering between solve, pick best and update, the only way to
parallelise the sequential code is to convert seq (solve) and/or
seq (update) into maps. Therefore, the possible parallelisations
are:

1) map (solve) ; pick best ; update
2) solve ; pick best ; map (update)
3) map (solve) ; pick best ; map (update)

Since solve dominates computing time, we are going to con-
sider only parallelisations 1) and 3). Speedups for these two
parallelisations, on titanic, xookik and power, with a varying
number of CPU threads used, are given in Figure 11. In the
figure, we denote map by m and a sequential stage by s.
Therefore, (m ; s ; s) denotes that solve is a parallel map,
pick best is sequential and update is also sequential. From the
Figure 11, we can observe (similarly to the Image Convolution
example) that speedups are similar for all parallel libraries.
The only exception is Fastflow on power, which gives slightly
better speedup than other libraries. Furthermore, both different
parallelisations give approximately the same speedups, with
the (m ; s ; m) parallelisation using more resources (threads)
altogether. This indicates that it is not always the best idea
to parallelise everything that can be parallelised. Finally, we
can note that none of the libraries is able to achieve linear
speedups, and on each system speedups tail off after certain
number of threads is used. This is due to a fact that a lot of
data is shared between threads and data-access is slower for

cores that are farther from the data. The maximum speedups
achieved are 12, 11 and 16 on titanic, xookik and power,
respectively.

VI. RELATED WORK

Early work in refactoring has been described in [22]. A good
survey (as of 2004) can be found in [17]. There has so
far been only a limited amount of work on refactoring for
parallelism [4]. In [5], a parallel refactoring methodology for
Erlang programs, including a refactoring tool, is introduced
for Skeletons in Erlang. Unlike the work presented here, the
technique is limited to Erlang and does not evaluate reductions
in development time. Other work on parallel refactoring has
mostly considered loop parallelisation in Fortran [21] and Java
[9]. However, these approaches are limited to concrete and
simple structural changes (e.g. loop unrolling).

Parallel design patterns are provided as algorithmic skele-
tons in a number of different parallel programming frameworks
[11] and several different authors advocated the massive usage
of patterns for writing parallel applications [16], [20] after
the well-known Berkeley report [6] indicated parallel design
patterns as a viable way to solve the problems related to
the development of parallel applications with traditional (low
level) parallel programming frameworks.

In the algorithmic skeleton research frameworks, there
is a lot of work on improving extra-functional features of
parallel programs by using pattern rewriting rules [15], [2],
[13]. We use these rules to support design space exploration
in our system. Other authors use rewriting/refactoring to sup-
port efficient code generation from skeletons/patterns [12],
which is a similar concept w.r.t. our approach. Finally, [14]
proposed a “parallel” embedded DSL exploiting annotations,
differently from what we use here, which is an external DSL.
Other authors proposed to adopt DSL approaches to parallel
programming [18], [25] similarly to what we propose here,
although the DSL proposed is an embedded DSL and mostly
aims at targeting heterogenous CPU/GPU hardware.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a high-level domain-specific lan-
guage, Refactoring Pattern Language (RPL), that can be used
to concisely and efficiently capture parallel patterns, and there-
fore describe the parallel structure of an application. RPL can
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Figure 3. Refactored Use Case Results in FastFlow

code and simply points the refactoring tool towards them. The
actual parallelisation is then performed by the refactoring tool,
supervised by the programmer. This can give significant sav-
ings in effort, of about one order of magnitude. This is achieved
without major performance losses: as desired, the speedups
achieved with the refactoring tool are approximately the same
as for full-scale manual implementations by an expert. In
future we expect to develop this work in a number of new
directions, including adding advanced performance models to
the refactoring process, thus allowing the user to accurately
predict the parallel performance from applying a particular
refactoring with a specified number of threads. This may be
particularly useful when porting the applications to different
architectures, including adding refactoring support for GPU
programming in OpenCl. Also, once sufficient automisation
of the refactoring tool is achieved, the best parametrisation
regarding parallel efficiency can be determined via optimisa-
tion, further facilitating this approach. In addition, we also
plan to implement more skeletons, particularly in the field of
computer alegbra and physics, and demonstrate the refactoring
approach with these new skeletons on a wide range of realistic
applications. This will add to the evidence that our approach is
general, usable and scalable. Finally, we intend to investigate
the limits of scalability that we have obvserved for some of our
use-cases, aiming to determine whether the limits are hardware
artefacts or algorithmic.
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Conclusions

§ Refactoring	
  tool	
  support:
§ Guides	
  a	
  programmer	
  through	
  steps	
  to	
  achieve	
  parallelism
§ Warns	
  the	
  user	
  if	
  they	
  are	
  going	
  wrong
§ Avoids	
  common	
  pitfalls
§ Helps	
  with	
  understanding and	
  intuition
§ Reduces	
  amount	
  of	
  boilerplate	
  code

§ Allows	
  programmer	
  to	
  concentrate	
  on	
  algorithm,	
  rather	
  
than	
  parallelism.
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•		 Allows	engagement	with	the	new	MultiCore/ManyCore	age,	with	
minimal	effort

•		 Provides	automated	guidance	on	choosing	the	right	Parallel	structure
•		 Provides	semi-automatic	(programmer-in-the-loop)	Parallelisation
•		 Significantly	increases	programmer	productivity
•		 Suitable	for	both	expert	and	non-specialist	programmers
•		 Provides	increased	portability	and	maintainability
•		 Greatly	improves	resilience	and	robustness	of	code
•		 Permits	performance	and	energy	estimations
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ParaFormance/Rephrase	
  Needs	
  You!

• Please	
  join	
  our	
  mailing	
  list
and	
  help	
  grow	
  our	
  user	
  community
§ news	
  items
§ access	
  to	
  free	
  development	
  software
§ chat	
  to	
  the	
  developers
§ free	
  developer	
  workshops
§ bug	
  tracking	
  and	
  fixing
§ Tools	
  for	
  both	
  Erlang and	
  C++

• Subscribe	
  at

• We’re	
  also	
  looking	
  for	
  open	
  source
developers...
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https://mailman.cs.st-­‐
andrews.ac.uk/mailman/listinfo/rephrase-­‐
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