
  

Ceph: a large open source C++ 
codebase

John Spray

john.spray@redhat.com
jcsp on #ceph-devel



  

Agenda

● Introducing Ceph & architecture
● Open source development in practice
● Technical aspects:

– Concurrency

– Serialization

– Allocation

– C++11 migration



  

Ceph

Source: http://www.theregister.co.uk/2015/11/09/open_source_hyperscale_storage/



  

Ceph

● Very high scale distributed storage system
● Underlying small object store (RADOS), with 

object/block/file interfaces layered on top
● Open source development, commercial support 

available from multiple vendors



  

Ceph and OpenStack

Source: http://www.openstack.org/assets/survey/Public-User-Survey-Report.pdf
OpenStack User Survey (Liberty cycle)

http://www.openstack.org/assets/survey/Public-User-Survey-Report.pdf


  

RADOS architecture



Object Storage Daemons

FS

DISK

OSD

DISK

OSD

FS

DISK

OSD

FS

DISK

OSD

FS

xfs
ext4

M

M

M



Rados Cluster

APPLICATION

M M

M M

M

RADOS CLUSTER



Where do objects live?

??

APPLICATION

M

M

M

OBJECT



A Metadata Server?

1

APPLICATION

M

M

M

2



Calculated placement

FAPPLICATION

M

M

M
A-G

H-N

O-T

U-Z



CRUSH: Dynamic data 
placement

Pseudo-random placement algorithm
● Fast calculation, no lookup
● Repeatable, deterministic

● Statistically uniform distribution
● Stable mapping

● Limited data migration on change
● Rule-based configuration

● Infrastructure topology aware
● Adjustable replication
● Weighting



CRUSH: Replication

RADOS CLUSTER

10

01

01

10

10

01

11

01

10

01

01

10

10

01 11

01

1001

0110 10 01

11

01

DATA



Recovering from failures
● OSDs notice when their peers stop responding, 
report this to monitors

● After some time, monitors mark the OSD “out”
● New peers selected by CRUSH, data is re-
replicated across whole cluster 

● Faster than RAID rebuild because we share the 
load

● Does not require administrator intervention



  

The Project



  

Codebase

● https://github.com/ceph/ceph
● 200k-ish C++ LOC (low estimate)
● LGPL license
● Contributions from variety of parties (software 

companies, hardware companies, users)
● Planning/design done via periodic online design 

summits (open to public)

https://github.com/ceph/ceph


  

Open source in practice

● Keep building on newest Fedora/Ubuntu: don't 
wait to update for dependency changes

● Use submodules where distro packages don't 
keep up (civetweb, rocksdb)

● Be disciplined on landing patches: keep a 
(fairly) stable master branch, and backport 
selectively to actual stable branches

● Upstream first.  Communicate in the open.



  

Contribution workflow

● Github Pull Requests
● Commits must be small and clear

– Requires discipline

– Enables backporting

– Enables answering “why?” from git history

● Gate commits on fast unit tests
● Slower tests run nightly and on hand-curated 

PR-testing branches



  

The Code



  

Request & Contexts

● General request flow: examine message, take 
some action, construct context.

● Callback objects, enqueued while waiting for e.g. 
I/O operations.

● Sometimes context is just “try handling this request 
again”, e.g. when acquiring distributed locks.

● Single threaded servers can get you a long way 
(scale-out more important than scale-up)



  

Concurrency

● Some things are (relatively) easily parallelised:
– Issuing requests to OSDs (Objecter)

– Reading and deserialising network IO (Messenger) 

● Prioritisation is important
– Extensive use of priority queues in OSD

– e.g. data scrubbing vs. backfilling vs. client IO

● Re-entrancy is a problem:
– Enqueue completions on separate “Finisher” thread

● Some things are (much) harder to parallelise:
– Filesystem metadata: classic example is two opposing mvs between two 

directories



  

Allocation

● Allocator performance matters!
● JEMalloc, TCMalloc
● Allocator performance sensitive to threading
● Historically CPU performance relatively 

unimportant compared with disk latency, but all 
that changes with NVRAM and fast SSDs.



  

Serialization

● Simple homebrew serialization scheme defined 
for basic types, STL containers, and derived 
types as needed

● Versioned, reasonably fast, integrates with 
same “bufferlist” structure used throughout 
code, easy interop with kernel C code

● Unfortunately makes it hard to handle serialized 
structures from non-C++ code



  

Other housekeeping

● Homebrew code for:
– Logging

– Configuration

– Performance counters

– Admin commands

● Not as bad as it sounds: small, easy to learn 
interfaces, no 3rd party deps.  Little ongoing 
maintenance.



  

CMake migration

● Autotools is painful
– Arcane syntax(es)

– Slow invokation

– Gratuitous rebuilds

● CMake migration relatively quick for main 
executables, long tail of little things for 
packaging etc.

● Use CMake by default for your new projects



  

C++11 migration

● Woohoo!
● Helpful things in new code: auto, for loops, 

lambdas
● std::function vs. Context (reduce allocations)
● Larger patches for standardized date types, 

standardized threading
● Main pain point was compiler/ABI support on 

LTS distros (RHEL6, Ubuntu 12.04)



  

Wrap up

● This was a very quick look at Ceph
● Want to learn more?

– https://github.com/ceph/ceph

– https://ceph.com/resources/mailing-list-irc/

– http://docs.ceph.com/docs/master/

● Questions...

https://ceph.com/resources/mailing-list-irc/
http://docs.ceph.com/docs/master/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

