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Agenda

● Introducing Ceph & architecture
● Open source development in practice
● Technical aspects:

– Concurrency

– Serialization

– Allocation

– C++11 migration



  

Ceph

Source: http://www.theregister.co.uk/2015/11/09/open_source_hyperscale_storage/



  

Ceph

● Very high scale distributed storage system
● Underlying small object store (RADOS), with 

object/block/file interfaces layered on top
● Open source development, commercial support 

available from multiple vendors



  

Ceph and OpenStack

Source: http://www.openstack.org/assets/survey/Public-User-Survey-Report.pdf
OpenStack User Survey (Liberty cycle)

http://www.openstack.org/assets/survey/Public-User-Survey-Report.pdf


  

RADOS architecture



Object Storage Daemons
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Rados Cluster
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Where do objects live?
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A Metadata Server?
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Calculated placement
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CRUSH: Dynamic data 
placement

Pseudo-random placement algorithm
● Fast calculation, no lookup
● Repeatable, deterministic

● Statistically uniform distribution
● Stable mapping

● Limited data migration on change
● Rule-based configuration

● Infrastructure topology aware
● Adjustable replication
● Weighting



CRUSH: Replication
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Recovering from failures
● OSDs notice when their peers stop responding, 
report this to monitors

● After some time, monitors mark the OSD “out”
● New peers selected by CRUSH, data is re-
replicated across whole cluster 

● Faster than RAID rebuild because we share the 
load

● Does not require administrator intervention



  

The Project



  

Codebase

● https://github.com/ceph/ceph
● 200k-ish C++ LOC (low estimate)
● LGPL license
● Contributions from variety of parties (software 

companies, hardware companies, users)
● Planning/design done via periodic online design 

summits (open to public)

https://github.com/ceph/ceph


  

Open source in practice

● Keep building on newest Fedora/Ubuntu: don't 
wait to update for dependency changes

● Use submodules where distro packages don't 
keep up (civetweb, rocksdb)

● Be disciplined on landing patches: keep a 
(fairly) stable master branch, and backport 
selectively to actual stable branches

● Upstream first.  Communicate in the open.



  

Contribution workflow

● Github Pull Requests
● Commits must be small and clear

– Requires discipline

– Enables backporting

– Enables answering “why?” from git history

● Gate commits on fast unit tests
● Slower tests run nightly and on hand-curated 

PR-testing branches



  

The Code



  

Request & Contexts

● General request flow: examine message, take 
some action, construct context.

● Callback objects, enqueued while waiting for e.g. 
I/O operations.

● Sometimes context is just “try handling this request 
again”, e.g. when acquiring distributed locks.

● Single threaded servers can get you a long way 
(scale-out more important than scale-up)



  

Concurrency

● Some things are (relatively) easily parallelised:
– Issuing requests to OSDs (Objecter)

– Reading and deserialising network IO (Messenger) 

● Prioritisation is important
– Extensive use of priority queues in OSD

– e.g. data scrubbing vs. backfilling vs. client IO

● Re-entrancy is a problem:
– Enqueue completions on separate “Finisher” thread

● Some things are (much) harder to parallelise:
– Filesystem metadata: classic example is two opposing mvs between two 

directories



  

Allocation

● Allocator performance matters!
● JEMalloc, TCMalloc
● Allocator performance sensitive to threading
● Historically CPU performance relatively 

unimportant compared with disk latency, but all 
that changes with NVRAM and fast SSDs.



  

Serialization

● Simple homebrew serialization scheme defined 
for basic types, STL containers, and derived 
types as needed

● Versioned, reasonably fast, integrates with 
same “bufferlist” structure used throughout 
code, easy interop with kernel C code

● Unfortunately makes it hard to handle serialized 
structures from non-C++ code



  

Other housekeeping

● Homebrew code for:
– Logging

– Configuration

– Performance counters

– Admin commands

● Not as bad as it sounds: small, easy to learn 
interfaces, no 3rd party deps.  Little ongoing 
maintenance.



  

CMake migration

● Autotools is painful
– Arcane syntax(es)

– Slow invokation

– Gratuitous rebuilds

● CMake migration relatively quick for main 
executables, long tail of little things for 
packaging etc.

● Use CMake by default for your new projects



  

C++11 migration

● Woohoo!
● Helpful things in new code: auto, for loops, 

lambdas
● std::function vs. Context (reduce allocations)
● Larger patches for standardized date types, 

standardized threading
● Main pain point was compiler/ABI support on 

LTS distros (RHEL6, Ubuntu 12.04)



  

Wrap up

● This was a very quick look at Ceph
● Want to learn more?

– https://github.com/ceph/ceph

– https://ceph.com/resources/mailing-list-irc/

– http://docs.ceph.com/docs/master/

● Questions...

https://ceph.com/resources/mailing-list-irc/
http://docs.ceph.com/docs/master/
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