
The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

C++ Extensions for Concepts
A Bottom-Up View

Simon Brand

Codeplay Software Ltd.

August 5, 2015

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Introduction

This talk aims to cover what the “C++ Extensions for
Concepts” proposal is, why it is needed and how an
implementation might be used.

Split into four parts:

The Problem
An Introduction to SFINAE
Expression SFINAE
Concepts

Trigger warning: contains advanced template
metaprogramming.

I assume at least a basic knowledge of C++ templates, but
more than that is probably helpful in getting the most out of
this talk.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Introduction

This talk aims to cover what the “C++ Extensions for
Concepts” proposal is, why it is needed and how an
implementation might be used.

Split into four parts:

The Problem
An Introduction to SFINAE
Expression SFINAE
Concepts

Trigger warning: contains advanced template
metaprogramming.

I assume at least a basic knowledge of C++ templates, but
more than that is probably helpful in getting the most out of
this talk.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Introduction

This talk aims to cover what the “C++ Extensions for
Concepts” proposal is, why it is needed and how an
implementation might be used.

Split into four parts:

The Problem
An Introduction to SFINAE
Expression SFINAE
Concepts

Trigger warning: contains advanced template
metaprogramming.

I assume at least a basic knowledge of C++ templates, but
more than that is probably helpful in getting the most out of
this talk.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Introduction

This talk aims to cover what the “C++ Extensions for
Concepts” proposal is, why it is needed and how an
implementation might be used.

Split into four parts:

The Problem
An Introduction to SFINAE
Expression SFINAE
Concepts

Trigger warning: contains advanced template
metaprogramming.

I assume at least a basic knowledge of C++ templates, but
more than that is probably helpful in getting the most out of
this talk.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Introduction

This talk aims to cover what the “C++ Extensions for
Concepts” proposal is, why it is needed and how an
implementation might be used.

Split into four parts:

The Problem

An Introduction to SFINAE
Expression SFINAE
Concepts

Trigger warning: contains advanced template
metaprogramming.

I assume at least a basic knowledge of C++ templates, but
more than that is probably helpful in getting the most out of
this talk.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Introduction

This talk aims to cover what the “C++ Extensions for
Concepts” proposal is, why it is needed and how an
implementation might be used.

Split into four parts:

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Trigger warning: contains advanced template
metaprogramming.

I assume at least a basic knowledge of C++ templates, but
more than that is probably helpful in getting the most out of
this talk.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Introduction

This talk aims to cover what the “C++ Extensions for
Concepts” proposal is, why it is needed and how an
implementation might be used.

Split into four parts:

The Problem
An Introduction to SFINAE
Expression SFINAE

Concepts

Trigger warning: contains advanced template
metaprogramming.

I assume at least a basic knowledge of C++ templates, but
more than that is probably helpful in getting the most out of
this talk.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Introduction

This talk aims to cover what the “C++ Extensions for
Concepts” proposal is, why it is needed and how an
implementation might be used.

Split into four parts:

The Problem
An Introduction to SFINAE
Expression SFINAE
Concepts

Trigger warning: contains advanced template
metaprogramming.

I assume at least a basic knowledge of C++ templates, but
more than that is probably helpful in getting the most out of
this talk.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Introduction

This talk aims to cover what the “C++ Extensions for
Concepts” proposal is, why it is needed and how an
implementation might be used.

Split into four parts:

The Problem
An Introduction to SFINAE
Expression SFINAE
Concepts

Trigger warning: contains advanced template
metaprogramming.

I assume at least a basic knowledge of C++ templates, but
more than that is probably helpful in getting the most out of
this talk.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Introduction

This talk aims to cover what the “C++ Extensions for
Concepts” proposal is, why it is needed and how an
implementation might be used.

Split into four parts:

The Problem
An Introduction to SFINAE
Expression SFINAE
Concepts

Trigger warning: contains advanced template
metaprogramming.

I assume at least a basic knowledge of C++ templates, but
more than that is probably helpful in getting the most out of
this talk.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Outline

1 The Problem

2 An Introduction to SFINAE
SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

3 Expression SFINAE
Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

4 Concepts

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:
Run-Time Polymorphism

Virtual functions
Relies on explicit interfaces

Compile-Time Polymorphism

Templates
Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:

Run-Time Polymorphism

Virtual functions
Relies on explicit interfaces

Compile-Time Polymorphism

Templates
Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:
Run-Time Polymorphism

Virtual functions
Relies on explicit interfaces

Compile-Time Polymorphism

Templates
Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:
Run-Time Polymorphism

Virtual functions

Relies on explicit interfaces

Compile-Time Polymorphism

Templates
Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:
Run-Time Polymorphism

Virtual functions
Relies on explicit interfaces

Compile-Time Polymorphism

Templates
Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:
Run-Time Polymorphism

Virtual functions
Relies on explicit interfaces

Compile-Time Polymorphism

Templates
Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:
Run-Time Polymorphism

Virtual functions
Relies on explicit interfaces

Compile-Time Polymorphism

Templates

Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:
Run-Time Polymorphism

Virtual functions
Relies on explicit interfaces

Compile-Time Polymorphism

Templates
Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:
Run-Time Polymorphism

Virtual functions
Relies on explicit interfaces

Compile-Time Polymorphism

Templates
Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:
Run-Time Polymorphism

Virtual functions
Relies on explicit interfaces

Compile-Time Polymorphism

Templates
Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:
Run-Time Polymorphism

Virtual functions
Relies on explicit interfaces

Compile-Time Polymorphism

Templates
Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:
Run-Time Polymorphism

Virtual functions
Relies on explicit interfaces

Compile-Time Polymorphism

Templates
Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The Problem

The two main categories of polymorphism in C++ are:
Run-Time Polymorphism

Virtual functions
Relies on explicit interfaces

Compile-Time Polymorphism

Templates
Relies on implicit interfaces

The problem with implicit interfaces is in the name: they
don’t have a simple, concrete definition.

This limits compiler diagnostics.

Some interfaces might just be enforced by convention.

We want a way to make these implicit interfaces explicit.

Iterators are a good example.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

Outline

1 The Problem

2 An Introduction to SFINAE
SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

3 Expression SFINAE
Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

4 Concepts

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

SFIN-what?

SFINAE stands for Substitution Failure is not an Error.

In certain circumstances, template substitution failures will
result in that instance being removed from the overload
candidate set rather than causing a hard compiler error.

SFINAE occurs in:

All types and expressions used in the function signature.
All types and expressions used in the template parameter
declaration.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

SFIN-what?

SFINAE stands for Substitution Failure is not an Error.

In certain circumstances, template substitution failures will
result in that instance being removed from the overload
candidate set rather than causing a hard compiler error.

SFINAE occurs in:

All types and expressions used in the function signature.
All types and expressions used in the template parameter
declaration.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

SFIN-what?

SFINAE stands for Substitution Failure is not an Error.

In certain circumstances, template substitution failures will
result in that instance being removed from the overload
candidate set rather than causing a hard compiler error.

SFINAE occurs in:

All types and expressions used in the function signature.
All types and expressions used in the template parameter
declaration.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

SFIN-what?

SFINAE stands for Substitution Failure is not an Error.

In certain circumstances, template substitution failures will
result in that instance being removed from the overload
candidate set rather than causing a hard compiler error.

SFINAE occurs in:

All types and expressions used in the function signature.
All types and expressions used in the template parameter
declaration.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

SFIN-what?

SFINAE stands for Substitution Failure is not an Error.

In certain circumstances, template substitution failures will
result in that instance being removed from the overload
candidate set rather than causing a hard compiler error.

SFINAE occurs in:

All types and expressions used in the function signature.

All types and expressions used in the template parameter
declaration.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

SFIN-what?

SFINAE stands for Substitution Failure is not an Error.

In certain circumstances, template substitution failures will
result in that instance being removed from the overload
candidate set rather than causing a hard compiler error.

SFINAE occurs in:

All types and expressions used in the function signature.
All types and expressions used in the template parameter
declaration.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

1 #i n c l u d e <i o s t r eam>
#i n c l u d e <vec to r>

3
temp la t e <typename T>

5 vo i d foo (T) { s t d : : cout << ” foo 1\n” ; }

7 temp la t e <typename T>
vo i d foo (typename T : : v a l u e t y p e) { s t d : : cout << ” foo 2\n” ; }

9
i n t main () {

11 foo<i n t >(1) ;
foo<s t d : : v e c to r<i n t >>(1) ;

13 }

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

1 #i n c l u d e <i o s t r eam>
#i n c l u d e <s tack>

3 #i n c l u d e <map>

5 temp la t e <typename T, typename T : : mapped type∗ = nu l l p t r>
vo i d foo (T) { s t d : : cout << ” foo 1\n” ; }

7
temp la t e <typename T, typename T : : c o n t a i n e r t y p e∗ = nu l l p t r>

9 vo i d foo (T) { s t d : : cout << ” foo 2\n” ; }

11 i n t main () {
f oo (s td : : map<i n t , i n t >{}) ;

13 foo (s t d : : s tack<i n t >{}) ;
}

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

Great, can I abuse it horribly?

I’m glad you asked!

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

Great, can I abuse it horribly?
I’m glad you asked!

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

#i n c l u d e <i o s t r eam>
2 #i n c l u d e <t y p e t r a i t s>

4 temp la t e <typename T,
typename s td : : e n a b l e i f <s t d : : i s f l o a t i n g p o i n t<T> : : va lue > : : t ype∗ =
nu l l p t r>

6 vo i d foo (T t) { s t d : : cout << ” foo f l o a t \n” ; }

8 temp la t e <typename T,
typename s td : : e n a b l e i f <s t d : : i s i n t e g r a l<T> : : va lue > : : t ype∗ = nu l l p t r>

10 vo i d foo (T t) { s t d : : cout << ” foo i n t\n” ; }

12 i n t main () {
f oo (1) ;

14 foo (1 . 0) ;
}

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

1 temp la t e <boo l Cond , typename T = void>
s t r u c t e n a b l e i f {};

3
t emp la t e <typename T>

5 s t r u c t e n a b l e i f<t rue ,T>
{ u s i n g type = T; } ;

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

What’s the worst we can do?

Well, expression SFINAE is pretty awful.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

What’s the worst we can do?
Well, expression SFINAE is pretty awful.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

Outline

1 The Problem

2 An Introduction to SFINAE
SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

3 Expression SFINAE
Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

4 Concepts

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

What is Expression SFINAE?

Bog-standard, plebian SFINAE allows you to control the
elimination of overloads from candidate sets by checking
qualities of the types used.

Expression SFINAE allows you to do the same by checking the
validity of any C++ expression on those types.

Note, this is not supported in Visual Studio, because Visual
Studio.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

What is Expression SFINAE?

Bog-standard, plebian SFINAE allows you to control the
elimination of overloads from candidate sets by checking
qualities of the types used.

Expression SFINAE allows you to do the same by checking the
validity of any C++ expression on those types.

Note, this is not supported in Visual Studio, because Visual
Studio.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

What is Expression SFINAE?

Bog-standard, plebian SFINAE allows you to control the
elimination of overloads from candidate sets by checking
qualities of the types used.

Expression SFINAE allows you to do the same by checking the
validity of any C++ expression on those types.

Note, this is not supported in Visual Studio, because Visual
Studio.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

What is Expression SFINAE?

Bog-standard, plebian SFINAE allows you to control the
elimination of overloads from candidate sets by checking
qualities of the types used.

Expression SFINAE allows you to do the same by checking the
validity of any C++ expression on those types.

Note, this is not supported in Visual Studio, because Visual
Studio.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

#i n c l u d e <i o s t r eam>
2

s t r u c t Ch icken {};
4

vo i d p r o c e s s (Ch icken){}
6 vo i d p r o c e s s (i n t){}

8 temp la t e <typename T>
vo i d t r a c e dP r o c e s s (T t){

10 p r o c e s s (t) ;
s t d : : cout << ” Proce s s ed v a l u e ” << t << s t d : : e nd l ;

12 }

14 i n t main () {
i n t i = 10 ;

16 Chicken c ;
s t d : : s t r i n g s = ”Chicken temp la t e l i b r a r y ” ;

18
t r a c e dP r o c e s s (i) ;

20 t r a c e dP r o c e s s (c) ;
t r a c e dP r o c e s s (s) ;

22 }

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

#i n c l u d e <i o s t r eam>
2

s t r u c t Ch icken {};
4

vo i d p r o c e s s (Ch icken){}
6 vo i d p r o c e s s (i n t){}

8 temp la t e <typename T>
vo i d t r a c e dP r o c e s s (T t , . . .)

10 { s t d : : cout << ”Cannot p r o c e s s g i v en type\n” ; }

12 temp la t e <typename T>
auto t r a c e dP r o c e s s (T t , i n t) −>

14 d e c l t y p e (p r o c e s s (t) , s t d : : cout << t , v o i d ()) {
p r o c e s s (t) ;

16 s td : : cout << ” Proce s s ed v a l u e ” << t << s t d : : e nd l ;
}

18
i n t main () {

20 i n t i = 10 ;
Ch icken c ;

22 s td : : s t r i n g s = ”Chicken temp la t e l i b r a r y ” ;

24 t r a c e dP r o c e s s (i , 0) ;
t r a c e dP r o c e s s (c , 0) ;

26 t r a c e dP r o c e s s (s , 0) ;
}

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

1 #i n c l u d e <i o s t r eam>

3 s t r u c t Ch icken {}; v o i d p r o c e s s (Ch icken){}
vo i d p r o c e s s (i n t){}

5
temp la t e <typename T> vo i d t r a c e dP r o c e s s (T t , . . .)

7 { s t d : : cout << ”Cannot p r o c e s s g i v en type\n” ; }

9 temp la t e <typename T> auto t r a c e dP r o c e s s (T t , cha r) −>
d e c l t y p e (p r o c e s s (t) , v o i d ()) {

11 p r o c e s s (t) ;
s t d : : cout << ” Proce s s ed va lue , but can ’ t output i t \n” ;

13 }

15 temp la t e <typename T> auto t r a c e dP r o c e s s (T t , i n t) −>
d e c l t y p e (p r o c e s s (t) , s t d : : cout << t , v o i d ()) {

17 p r o c e s s (t) ;
s t d : : cout << ” Proce s s ed v a l u e ” << t << s t d : : e nd l ;

19 }

21
i n t main () {

23 i n t i = 10 ;
Ch icken c ;

25 s td : : s t r i n g s = ”Chicken temp la t e l i b r a r y ” ;
t r a c e dP r o c e s s (i , 0) ;

27 t r a c e dP r o c e s s (c , 0) ;
t r a c e dP r o c e s s (s , 0) ;

29 }

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

1 #i n c l u d e <i o s t r eam>

3 s t r u c t A
{ v i r t u a l v o i d foo () = 0 ; } ;

5
t emp la t e <typename T>

7 s t r u c t B : A {
// t h i s i f i n s t a n t i a t i o n i s v a l i d

9 vo i d foo () o v e r r i d e {
s t d : : cout << T{};

11 }

13 // o t h e rw i s e t h i s
// v i r t u a l v o i d foo () = 0 ;

15 } ;

17 c l a s s C : p u b l i c B<vo id>
{ vo i d foo () o v e r r i d e {} } ;

19
i n t main () {

21 A ∗a = new B<s t d : : s t r i n g >{}; // a l l good
A ∗b = new B<vo id>{}; // shou ld f a i l to comp i l e

23 A ∗c = new C{}; // f a i l s to compi le , we want i t to succeed
}

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

temp la t e <typename . . .> s t r u c t v o i d e r { u s i n g type = vo i d ; } ;
2 t emp la t e <typename . . . Args> u s i n g v o i d t = typename vo i d e r<Args . . . >:: t ype ;

4 t emp la t e <t emp la t e <typename . . .> c l a s s T, typename , typename . . . Args>
s t r u c t i s d e t e c t e d i m p l { u s i n g type = s td : : f a l s e t y p e ; } ;

6
t emp la t e <t emp la t e <typename . . .> c l a s s T, typename . . . Args>

8 s t r u c t i s d e t e c t e d im p l<T, vo i d t<T<Args . . .>>, Args . . .>
{ u s i n g type = s td : : t r u e t y p e ; } ;

10
t emp la t e <t emp la t e <typename . . .> c l a s s T, typename . . . Args>

12 u s i n g i s d e t e c t e d = typename i s d e t e c t e d im p l<T, vo id , Args . . . >:: t ype ;

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

#i n c l u d e <i o s t r eam>
2 #i n c l u d e ” i s d e t e c t e d . hpp”

4 temp la t e <typename T>
u s i n g d e f a u l t c o n s t r u c t o r f o o t = d e c l t y p e (T{} , s t d : : cout << T{}) ;

6
t emp la t e <typename T>

8 u s i n g h a s d e f a u l t c o n s t r u c t o r f o o = i s d e t e c t e d<d e f a u l t c o n s t r u c t o r f o o t , T>;

10 s t r u c t A
{ v i r t u a l v o i d foo () = 0 ; } ;

12
t emp la t e <typename T, typename = h a s d e f a u l t c o n s t r u c t o r f o o<T> >

14 s t r u c t B : A {};

16 t emp la t e <typename T>
s t r u c t B <T, s td : : t r u e t y p e> : A

18 { vo i d foo () o v e r r i d e { s t d : : cout << T{}; } } ;

20 c l a s s C : p u b l i c B<vo id>
{ vo i d foo () o v e r r i d e {} } ;

22
i n t main () {

24 A ∗a = new B<s t d : : s t r i n g >{}; // a l l good
A ∗b = new B<vo id>{}; // shou ld f a i l to comp i l e

26 A ∗c = new C{}; // suc c e ed s !
}

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

1 e x p r s f i n a e 3 . cpp : I n f u n c t i o n ’ i n t main () ’ :
e x p r s f i n a e 3 . cpp : 2 8 : 2 3 : e r r o r : no matching f u n c t i o n f o r c a l l to ’ t r a c e dP r o c e s s (

s t d : : c x x11 : : s t r i n g &, i n t) ’
3 t r a c e dP r o c e s s (s , 0) ;

ˆ
5 e x p r s f i n a e 3 . cpp : 1 5 : 2 8 : note : c and i d a t e : template<c l a s s T> d e c l t y p e (((p r o c e s s (t)

, (s t d : : cout << t)) , v o i d ())) t r a c e dP r o c e s s (T, i n t)
t emp la t e <typename T> auto t r a c e dP r o c e s s (T t , i n t) −>

7 ˆ
e x p r s f i n a e 3 . cpp : 1 5 : 2 8 : note : t emp la t e argument deduc t i on / s u b s t i t u t i o n f a i l e d :

9 e x p r s f i n a e 3 . cpp : I n s u b s t i t u t i o n o f ’ template<c l a s s T> d e c l t y p e (((p r o c e s s (t) , (
s t d : : cout << t)) , v o i d ())) t r a c e dP r o c e s s (T, i n t) [w i th T = s td : : c x x11 : :
b a s i c s t r i n g<char>] ’ :

e x p r s f i n a e 3 . cpp : 2 8 : 2 3 : r e q u i r e d from he r e
11 e x p r s f i n a e 3 . cpp : 1 6 : 2 1 : e r r o r : no matching f u n c t i o n f o r c a l l to ’ p r o c e s s (s t d : :

c x x11 : : b a s i c s t r i n g<char>&) ’
d e c l t y p e (p r o c e s s (t) , s t d : : cout << t , v o i d ()) {

13 ˆ
e x p r s f i n a e 3 . cpp : 3 : 2 4 : note : c and i d a t e : v o i d p r o c e s s (Ch icken)

15 s t r u c t Ch icken {}; v o i d p r o c e s s (Ch icken){}
ˆ

17 e x p r s f i n a e 3 . cpp : 3 : 2 4 : note : no known c on v e r s i o n f o r argument 1 from ’ s td : :
c x x11 : : b a s i c s t r i n g<char>’ to ’ Ch icken ’

e x p r s f i n a e 3 . cpp : 4 : 6 : note : c and i d a t e : v o i d p r o c e s s (i n t)
19 vo i d p r o c e s s (i n t){}

ˆ
21 e x p r s f i n a e 3 . cpp : 4 : 6 : note : no known c on v e r s i o n f o r argument 1 from ’ s td : :

c x x11 : : b a s i c s t r i n g<char>’ to ’ i n t ’

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

Outline

1 The Problem

2 An Introduction to SFINAE
SFIN-what?
Great, can abuse it horribly?
What’s the worst we can do?

3 Expression SFINAE
Huh?
I see...
I don’t think that’s a good...
Oh God, what are you doing
Please stop

4 Concepts

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Past

Concepts were proposed as an extension for C++11, but were
removed before standardisation as they were deemed not
ready.

Broadly split into constraints and axioms.
Constraints

Puts restrictions on syntactic qualities of types.
E.g. does a function exist, does this expression result in that
type, does a class have this member.
Checked statically.

Axioms

Puts restrictions on semantic qualities of types.
E.g. is operator == associative, is operator+ commutative, is
operator > the opposite of operator <
Not checked by the compiler.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Past

Concepts were proposed as an extension for C++11, but were
removed before standardisation as they were deemed not
ready.

Broadly split into constraints and axioms.
Constraints

Puts restrictions on syntactic qualities of types.
E.g. does a function exist, does this expression result in that
type, does a class have this member.
Checked statically.

Axioms

Puts restrictions on semantic qualities of types.
E.g. is operator == associative, is operator+ commutative, is
operator > the opposite of operator <
Not checked by the compiler.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Past

Concepts were proposed as an extension for C++11, but were
removed before standardisation as they were deemed not
ready.

Broadly split into constraints and axioms.

Constraints

Puts restrictions on syntactic qualities of types.
E.g. does a function exist, does this expression result in that
type, does a class have this member.
Checked statically.

Axioms

Puts restrictions on semantic qualities of types.
E.g. is operator == associative, is operator+ commutative, is
operator > the opposite of operator <
Not checked by the compiler.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Past

Concepts were proposed as an extension for C++11, but were
removed before standardisation as they were deemed not
ready.

Broadly split into constraints and axioms.
Constraints

Puts restrictions on syntactic qualities of types.
E.g. does a function exist, does this expression result in that
type, does a class have this member.
Checked statically.

Axioms

Puts restrictions on semantic qualities of types.
E.g. is operator == associative, is operator+ commutative, is
operator > the opposite of operator <
Not checked by the compiler.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Past

Concepts were proposed as an extension for C++11, but were
removed before standardisation as they were deemed not
ready.

Broadly split into constraints and axioms.
Constraints

Puts restrictions on syntactic qualities of types.

E.g. does a function exist, does this expression result in that
type, does a class have this member.
Checked statically.

Axioms

Puts restrictions on semantic qualities of types.
E.g. is operator == associative, is operator+ commutative, is
operator > the opposite of operator <
Not checked by the compiler.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Past

Concepts were proposed as an extension for C++11, but were
removed before standardisation as they were deemed not
ready.

Broadly split into constraints and axioms.
Constraints

Puts restrictions on syntactic qualities of types.
E.g. does a function exist, does this expression result in that
type, does a class have this member.

Checked statically.

Axioms

Puts restrictions on semantic qualities of types.
E.g. is operator == associative, is operator+ commutative, is
operator > the opposite of operator <
Not checked by the compiler.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Past

Concepts were proposed as an extension for C++11, but were
removed before standardisation as they were deemed not
ready.

Broadly split into constraints and axioms.
Constraints

Puts restrictions on syntactic qualities of types.
E.g. does a function exist, does this expression result in that
type, does a class have this member.
Checked statically.

Axioms

Puts restrictions on semantic qualities of types.
E.g. is operator == associative, is operator+ commutative, is
operator > the opposite of operator <
Not checked by the compiler.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Past

Concepts were proposed as an extension for C++11, but were
removed before standardisation as they were deemed not
ready.

Broadly split into constraints and axioms.
Constraints

Puts restrictions on syntactic qualities of types.
E.g. does a function exist, does this expression result in that
type, does a class have this member.
Checked statically.

Axioms

Puts restrictions on semantic qualities of types.
E.g. is operator == associative, is operator+ commutative, is
operator > the opposite of operator <
Not checked by the compiler.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Past

Concepts were proposed as an extension for C++11, but were
removed before standardisation as they were deemed not
ready.

Broadly split into constraints and axioms.
Constraints

Puts restrictions on syntactic qualities of types.
E.g. does a function exist, does this expression result in that
type, does a class have this member.
Checked statically.

Axioms

Puts restrictions on semantic qualities of types.

E.g. is operator == associative, is operator+ commutative, is
operator > the opposite of operator <
Not checked by the compiler.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Past

Concepts were proposed as an extension for C++11, but were
removed before standardisation as they were deemed not
ready.

Broadly split into constraints and axioms.
Constraints

Puts restrictions on syntactic qualities of types.
E.g. does a function exist, does this expression result in that
type, does a class have this member.
Checked statically.

Axioms

Puts restrictions on semantic qualities of types.
E.g. is operator == associative, is operator+ commutative, is
operator > the opposite of operator <

Not checked by the compiler.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Past

Concepts were proposed as an extension for C++11, but were
removed before standardisation as they were deemed not
ready.

Broadly split into constraints and axioms.
Constraints

Puts restrictions on syntactic qualities of types.
E.g. does a function exist, does this expression result in that
type, does a class have this member.
Checked statically.

Axioms

Puts restrictions on semantic qualities of types.
E.g. is operator == associative, is operator+ commutative, is
operator > the opposite of operator <
Not checked by the compiler.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Future

There are currently no official plans to support full concepts in
upcoming C++ releases.

There is a proposal for C++ Extension for Concepts
(previously known as Concepts Lite) which currently exists as
a Technical Specification proposal.

Essentially the constraints element of the original proposal.

Full concepts might make it into C++17.

Visual Studio support expected in 2087.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Future

There are currently no official plans to support full concepts in
upcoming C++ releases.

There is a proposal for C++ Extension for Concepts
(previously known as Concepts Lite) which currently exists as
a Technical Specification proposal.

Essentially the constraints element of the original proposal.

Full concepts might make it into C++17.

Visual Studio support expected in 2087.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Future

There are currently no official plans to support full concepts in
upcoming C++ releases.

There is a proposal for C++ Extension for Concepts
(previously known as Concepts Lite) which currently exists as
a Technical Specification proposal.

Essentially the constraints element of the original proposal.

Full concepts might make it into C++17.

Visual Studio support expected in 2087.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Future

There are currently no official plans to support full concepts in
upcoming C++ releases.

There is a proposal for C++ Extension for Concepts
(previously known as Concepts Lite) which currently exists as
a Technical Specification proposal.

Essentially the constraints element of the original proposal.

Full concepts might make it into C++17.

Visual Studio support expected in 2087.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Future

There are currently no official plans to support full concepts in
upcoming C++ releases.

There is a proposal for C++ Extension for Concepts
(previously known as Concepts Lite) which currently exists as
a Technical Specification proposal.

Essentially the constraints element of the original proposal.

Full concepts might make it into C++17.

Visual Studio support expected in 2087.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

A Trip to the Future

There are currently no official plans to support full concepts in
upcoming C++ releases.

There is a proposal for C++ Extension for Concepts
(previously known as Concepts Lite) which currently exists as
a Technical Specification proposal.

Essentially the constraints element of the original proposal.

Full concepts might make it into C++17.

Visual Studio support expected in 2087.

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

1 #i n c l u d e <i o s t r eam>

3 s t r u c t Ch icken {}; v o i d p r o c e s s (Ch icken){}
vo i d p r o c e s s (i n t){}

5
template<typename T> concept boo l P r o c e s s a b l e =

7 r e q u i r e s (T t) { { p r o c e s s (t) } −> vo i d ; } ;
t emplate<typename T> concept boo l Coutab l e = r e q u i r e s (T t) { s t d : : cout << t ; } ;

9
t emp la t e <typename T> vo i d t r a c e dP r o c e s s (T t , . . .)

11 { s t d : : cout << ”Cannot p r o c e s s g i v en type\n” ; }

13 temp la t e <P r o c e s s a b l e T> vo i d t r a c e dP r o c e s s (T t , cha r) {
p r o c e s s (t) ;

15 s td : : cout << ” Proce s s ed va lue , but can ’ t output i t \n” ;
}

17
temp la t e <typename T> r e q u i r e s P ro c e s s ab l e<T> && Coutab le<T>

19 vo i d t r a c e dP r o c e s s (T t , i n t) {
p r o c e s s (t) ;

21 s td : : cout << ” Proce s s ed v a l u e ” << t << s t d : : e nd l ;
}

23
i n t main () {

25 i n t i = 10 ; Ch icken c ; s t d : : s t r i n g s = ”Chicken temp la t e l i b r a r y ” ;

27 t r a c e dP r o c e s s (i , 0) ;
t r a c e dP r o c e s s (c , 0) ;

29 t r a c e dP r o c e s s (s , 0) ;
}

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

e x p r s f i n a e 3 . cpp : I n f u n c t i o n ’ i n t main () ’ :
2 e x p r s f i n a e 3 . cpp : 2 8 : 2 3 : e r r o r : no matching f u n c t i o n f o r c a l l to ’ t r a c e dP r o c e s s (

s t d : : c x x11 : : s t r i n g &, i n t) ’
t r a c e dP r o c e s s (s , 0) ;

4 ˆ
e x p r s f i n a e 3 . cpp : 1 5 : 2 8 : note : c and i d a t e : template<c l a s s T> d e c l t y p e (((p r o c e s s (t)

, (s t d : : cout << t)) , v o i d ())) t r a c e dP r o c e s s (T, i n t)
6 t emp la t e <typename T> auto t r a c e dP r o c e s s (T t , i n t) −>

ˆ
8 e x p r s f i n a e 3 . cpp : 1 5 : 2 8 : note : t emp la t e argument deduc t i on / s u b s t i t u t i o n f a i l e d :

e x p r s f i n a e 3 . cpp : I n s u b s t i t u t i o n o f ’ template<c l a s s T> d e c l t y p e (((p r o c e s s (t) , (
s t d : : cout << t)) , v o i d ())) t r a c e dP r o c e s s (T, i n t) [w i th T = s td : : c x x11 : :
b a s i c s t r i n g<char>] ’ :

10 e x p r s f i n a e 3 . cpp : 2 8 : 2 3 : r e q u i r e d from he r e
e x p r s f i n a e 3 . cpp : 1 6 : 2 1 : e r r o r : no matching f u n c t i o n f o r c a l l to ’ p r o c e s s (s t d : :

c x x11 : : b a s i c s t r i n g<char>&) ’
12 d e c l t y p e (p r o c e s s (t) , s t d : : cout << t , v o i d ()) {

ˆ
14 e x p r s f i n a e 3 . cpp : 3 : 2 4 : note : c and i d a t e : v o i d p r o c e s s (Ch icken)

s t r u c t Ch icken {}; v o i d p r o c e s s (Ch icken){}
16 ˆ

e x p r s f i n a e 3 . cpp : 3 : 2 4 : note : no known c on v e r s i o n f o r argument 1 from ’ s td : :
c x x11 : : b a s i c s t r i n g<char>’ to ’ Ch icken ’

18 e x p r s f i n a e 3 . cpp : 4 : 6 : note : c and i d a t e : v o i d p r o c e s s (i n t)
vo i d p r o c e s s (i n t){}

20 ˆ
e x p r s f i n a e 3 . cpp : 4 : 6 : note : no known c on v e r s i o n f o r argument 1 from ’ s td : :

c x x11 : : b a s i c s t r i n g<char>’ to ’ i n t ’

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

1 e x p r s f i n a e c o n c e p t . cpp : I n f u n c t i o n ’ i n t main () ’ :
e x p r s f i n a e c o n c e p t . cpp : 3 4 : 2 3 : e r r o r : cannot c a l l f u n c t i o n ’ vo i d t r a c e dP r o c e s s (T,

i n t) [w i th T = s td : : c x x11 : : b a s i c s t r i n g<char>] ’
3 t r a c e dP r o c e s s (s , 0) ;

ˆ
5 e x p r s f i n a e c o n c e p t . cpp : 2 2 : 6 : note : c o n s t r a i n t s not s a t i s f i e d

vo i d t r a c e dP r o c e s s (T t , i n t) {
7 ˆ

e x p r s f i n a e c o n c e p t . cpp : 2 2 : 6 : note : ’ P r o c e s s ab l e<T>’ e v a l u a t e d to f a l s e
9 e x p r s f i n a e c o n c e p t . cpp : 2 2 : 6 : note : ’ P r o c e s s ab l e<T>’ e v a l u a t e d to f a l s e

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

1 #i n c l u d e <i o s t r eam>

3 s t r u c t A
{ v i r t u a l v o i d foo () = 0 ; } ;

5
t emp la t e <typename T>

7 s t r u c t B : A {};

9 t emp la t e <typename T>
r e q u i r e s r e q u i r e s (T t) { s t d : : cout << T{}; }

11 s t r u c t B<T> : A
{ vo i d foo () o v e r r i d e { s t d : : cout << T{}; } } ;

13
c l a s s C : p u b l i c B<vo id>

15 { vo i d foo () o v e r r i d e {} } ;

17 i n t main () {
A ∗a = new B<s t d : : s t r i n g >{}; // a l l good

19 A ∗b = new B<vo id>{}; // shou ld f a i l to comp i l e
A ∗c = new C{}; // suc c e ed s !

21 }

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The End!

Any questions?

Simon Brand Concepts

The Problem
An Introduction to SFINAE

Expression SFINAE
Concepts

The End!
Any questions?

Simon Brand Concepts

	The Problem
	An Introduction to SFINAE
	SFIN-what?
	Great, can abuse it horribly?
	What's the worst we can do?

	Expression SFINAE
	Huh?
	I see...
	I don't think that's a good...
	Oh God, what are you doing
	Please stop

	Concepts

