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Agenda

• Default and Deleted Methods

• Static Assertions

• Delegated and Inherited Constructors

• Null Pointer Type

• Enum Classes

• Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics
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Default and Deleted Functions

• New 'default' keyword specifies default 
constructor or operator

• Useful when partially implementing the rule 
of three (or five)



4

Default and Deleted Functions

• Example:
foo uses the default

copy constructor and
assignment operator
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Default and Deleted Functions

• New 'delete' keyword specifies a constructor 
or operator as unavailable

• Useful for restricting the way a type can be 
used
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Default and Deleted Functions

• Example:
foo is non-copyable
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Agenda

Default and Deleted Methods

• Static Assertions

• Delegated and Inherited Constructors

• Null Pointer Type

• Enum Classes

• Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics
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Static Assertions

• Compile time assertions
• Useful for generating compiler time errors for 

templates 
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Static Assertions

• Example:

foo<int, 0> f;
would give this compiler error
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Agenda

Default and Deleted Methods

Static Assertions

• Delegated and Inherited Constructors

• Null Pointer Type

• Enum Classes

• Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics
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Delegated and Inherited Constructors

• Delegated constructors allows one constructor 
to call another

• Useful for avoiding code duplication for 
initialization 
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Delegated and Inherited Constructors

• Example:
foo's default constructor calls

foo's second constructor
foo() → foo(int, int, int)
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Delegated and Inherited Constructors

• Inherited constructors allows a class to inherit 
constructors from its base class

• Useful for avoiding constructors that simply 
pass on the same parameters
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Delegated and Inherited Constructors

• Example:

bar inherits the constructors:
bar ()

bar (int)
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Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

• Null Pointer Type

• Enum Classes

• Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics
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Null Pointer Type

• New 'nullptr' keyword
• Alias for the 'nullptr_t' type
• Comparable to any pointer
• Not implicitly convertible or comparable to 

integral types, except bool
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Null Pointer Type

• Example:
Which constructor is

called when passing NULL?

Which constructor is
called when passing

nullptr?
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Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

Null Pointer Type

• Enum Classes

• Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics
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Enum Classes

• Improvement on traditional enums
• Allows forward declarations
• Does not pollute top level namespace
• Not implicitly convertible to integers
• Can specify the element size
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Enum Classes

• Example:
Each element of the enum

is an integer.

animal_type animalType = animal_type::dog
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Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

Null Pointer Type

Enum Classes

• Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics
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Automatic Type Deduction

• New 'auto' keyword allows compile type 
deduction

• Useful when a type is very complex such as 
iterators or functions
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Automatic Type Deduction

• Example:
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Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

Null Pointer Type

Enum Classes

Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics
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Ranged For Loops

• Simpler syntax for iterable types
• Can be used on any type that has either:

– begin() and end() methods
– begin(std::vector) and end(std::vector) 

functions
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Ranged For Loops

• Example:

It is also possible to use
auto as the type for i
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Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

Null Pointer Type

Enum Classes

Automatic Type Deduction

Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics
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Smart Pointers

• Standard library template pointer classes
• Aims to solve the problems associated with 

raw pointers management
• shared_ptr – reference counts the pointer
• unique_ptr – only allows a single copy of the 

pointer
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Smart Pointers

• Example:

Oops, the destructor
isn't deleting the

raw pointer!
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Smart Pointers

• Example:

The shared_ptr handles
deleting the pointer

automatically
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Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

Null Pointer Type

Enum Classes

Automatic Type Deduction

Ranged For Loops

Smart Pointers

• Lambdas and Function Type

• Move Semantics
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Lambdas and Function Type

• Anonymous functions!
– [] - variable capture ([&], [=], [this])
– () - parameters
– {} - function body

• Function type
– 'std::function<void(int)>'
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Lambdas and Function Type

• Example:
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Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

Null Pointer Type

Enum Classes

Automatic Type Deduction

Ranged For Loops

Smart Pointers

Lambdas and Function Type

• Move Semantics
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Move Semantics

• L-value
– An expression with identity, that has address-able 

memory
– Variables, pointers, references, parameters

• R-value
– An expression with no identity, that does not have 

address-able memory
– Literals, temporaries



36

Move Semantics

• Example:
These are all

l-values



37

Move Semantics

• Example:
These are all

r-values
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Move Semantics

• L-value reference
– int &r;

• R-value reference
– int &&r;

•  std::move()
– Prolongs an r-value reference
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Move Semantics

• Example:
When make_foo returns, a

temporary foo object is created on
the stack which is used to construct f
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Move Semantics

• Example:
By using std::move() the move
constructor for foo is triggered

therefore avoiding the copy

Important to note that when using
move semantics, the previous

object becomes invalid
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What Next?

• C++11 is awesome
– Try it out
– There are many other features

• C++14 is now out
– Try that out too
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