
C++11: 10 Features You
Should be Using

Gordon Brown
@AerialMantis

R&D Runtime Engineer
Codeplay Software Ltd.

2

Agenda

• Default and Deleted Methods

• Static Assertions

• Delegated and Inherited Constructors

• Null Pointer Type

• Enum Classes

• Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics

3

Default and Deleted Functions

• New 'default' keyword specifies default
constructor or operator

• Useful when partially implementing the rule
of three (or five)

4

Default and Deleted Functions

• Example:
foo uses the default

copy constructor and
assignment operator

5

Default and Deleted Functions

• New 'delete' keyword specifies a constructor
or operator as unavailable

• Useful for restricting the way a type can be
used

6

Default and Deleted Functions

• Example:
foo is non-copyable

7

Agenda

Default and Deleted Methods

• Static Assertions

• Delegated and Inherited Constructors

• Null Pointer Type

• Enum Classes

• Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics

8

Static Assertions

• Compile time assertions
• Useful for generating compiler time errors for

templates

9

Static Assertions

• Example:

foo<int, 0> f;
would give this compiler error

10

Agenda

Default and Deleted Methods

Static Assertions

• Delegated and Inherited Constructors

• Null Pointer Type

• Enum Classes

• Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics

11

Delegated and Inherited Constructors

• Delegated constructors allows one constructor
to call another

• Useful for avoiding code duplication for
initialization

12

Delegated and Inherited Constructors

• Example:
foo's default constructor calls

foo's second constructor
foo() → foo(int, int, int)

13

Delegated and Inherited Constructors

• Inherited constructors allows a class to inherit
constructors from its base class

• Useful for avoiding constructors that simply
pass on the same parameters

14

Delegated and Inherited Constructors

• Example:

bar inherits the constructors:
bar ()

bar (int)

15

Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

• Null Pointer Type

• Enum Classes

• Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics

16

Null Pointer Type

• New 'nullptr' keyword
• Alias for the 'nullptr_t' type
• Comparable to any pointer
• Not implicitly convertible or comparable to

integral types, except bool

17

Null Pointer Type

• Example:
Which constructor is

called when passing NULL?

Which constructor is
called when passing

nullptr?

18

Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

Null Pointer Type

• Enum Classes

• Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics

19

Enum Classes

• Improvement on traditional enums
• Allows forward declarations
• Does not pollute top level namespace
• Not implicitly convertible to integers
• Can specify the element size

20

Enum Classes

• Example:
Each element of the enum

is an integer.

animal_type animalType = animal_type::dog

21

Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

Null Pointer Type

Enum Classes

• Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics

22

Automatic Type Deduction

• New 'auto' keyword allows compile type
deduction

• Useful when a type is very complex such as
iterators or functions

23

Automatic Type Deduction

• Example:

24

Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

Null Pointer Type

Enum Classes

Automatic Type Deduction

• Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics

25

Ranged For Loops

• Simpler syntax for iterable types
• Can be used on any type that has either:

– begin() and end() methods
– begin(std::vector) and end(std::vector)

functions

26

Ranged For Loops

• Example:

It is also possible to use
auto as the type for i

27

Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

Null Pointer Type

Enum Classes

Automatic Type Deduction

Ranged For Loops

• Smart Pointers

• Lambdas and Function Type

• Move Semantics

28

Smart Pointers

• Standard library template pointer classes
• Aims to solve the problems associated with

raw pointers management
• shared_ptr – reference counts the pointer
• unique_ptr – only allows a single copy of the

pointer

29

Smart Pointers

• Example:

Oops, the destructor
isn't deleting the

raw pointer!

30

Smart Pointers

• Example:

The shared_ptr handles
deleting the pointer

automatically

31

Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

Null Pointer Type

Enum Classes

Automatic Type Deduction

Ranged For Loops

Smart Pointers

• Lambdas and Function Type

• Move Semantics

32

Lambdas and Function Type

• Anonymous functions!
– [] - variable capture ([&], [=], [this])
– () - parameters
– {} - function body

• Function type
– 'std::function<void(int)>'

33

Lambdas and Function Type

• Example:

34

Agenda

Default and Deleted Methods

Static Assertions

Delegated and Inherited Constructors

Null Pointer Type

Enum Classes

Automatic Type Deduction

Ranged For Loops

Smart Pointers

Lambdas and Function Type

• Move Semantics

35

Move Semantics

• L-value
– An expression with identity, that has address-able

memory
– Variables, pointers, references, parameters

• R-value
– An expression with no identity, that does not have

address-able memory
– Literals, temporaries

36

Move Semantics

• Example:
These are all

l-values

37

Move Semantics

• Example:
These are all

r-values

38

Move Semantics

• L-value reference
– int &r;

• R-value reference
– int &&r;

• std::move()
– Prolongs an r-value reference

39

Move Semantics

• Example:
When make_foo returns, a

temporary foo object is created on
the stack which is used to construct f

40

Move Semantics

• Example:
By using std::move() the move
constructor for foo is triggered

therefore avoiding the copy

Important to note that when using
move semantics, the previous

object becomes invalid

41

What Next?

• C++11 is awesome
– Try it out
– There are many other features

• C++14 is now out
– Try that out too

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

